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coloredquarksandgluonsaregovernedby theequationsof quantumchromodynamics.
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1. Introduction

The purposeof the presentpaper is to discussrecent work on the quark bag model and its
applicationsto hadronspectroscopyandsomehigh-energyphenomena.

It hasbecomewidely acceptedthathadronsare compositeobjectswith fractionally chargedquark
constituents.Hadron spectroscopymay be explainedthen in terms of the excitationsof valence
quarksinsidecompositehadrons.Perhapsevenmorestrikingly, underpowerfulelectronandneutrino
microscopes,the elementaryquark degreesof freedom (quark-partons)havebeenresolvedin deep
inelasticlepton—nucleonscattering.

Nevertheless,quarksas ordinary elementaryparticleshave never beenisolated from composite
hadrons.This negativeexperimentalresultmotivatesthe ideaof quarkconfinementandaccordingly,
quarksareassumedto be permanentlyboundinside strongly interactingparticles.

The final microscopictheory for describingthis strangesituationin hadronphysics is not known
yet. Thequarkbagmodelis arecentattemptto approachthe problemof quarkconfinementfrom the
phenomenologicalside.

1.1. Thequark bag model

Motivated by recentfield theoretical investigationswe shall assumethat the physical vacuumis
characterizedby some microscopic structurewhich in “normal phase”,outside hadrons,cannot
support the propagationof quark and gluon fields. The vacuumacts like a strangemedium against
hadronicconstituentfields, thoughLorentz invariancewill be maintained.

Now, by concentrationof energy,a small domain of a different phasemay be createdin the
“medium” of the physicalvacuum. It is like boiling the vacuumand creating small bubbles with a
characteristicsize of one fermi. Inside the bubble (the hadron phase)quark and gluon fields can
propagatein the ordinary manner.

We picture the hadronthenas a smalldomainin the new phasewith quarkandgluonconstituents.
This is the bag. The boundarysurfaceof the bagbetweenthe two phasesis impermeableagainstthe
vectorgluon fields, so that theycannotpenetrateinto the “normal phase”of thevacuum(seefig. 1.1).

The impermeabilityof the surfaceis expressedin the form of boundaryconditionsfor the gluon
fields. The gluonelectric fields E, (i = 1,2. . . , 8) in an octetof eightcolors aretangentialwhereasthe
gluon induction fields B~are normal to the surface in the instantaneousrest frame of the surface
element.As aconsequence,thereis no gluonfield energyor momentumflux through the surface.

(a) (b)
Fig. 1.1. Thetwo different phasesof thevacuumareseparatedin (a) by theboundaryof thebag in hadronphase.The gluon radiationemittedby a
moving quark is totally reflectedon thebagsurfaceand thecolorelectricflux linesareconfinedto thehadronphasewhen thebagtries to fission
into color non-singletpartsin (b).
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The dynamicsof thequarkandgluon fields inside the bagis governedlocally by the field equations
of quantumchromodynamics(q.c.d.). This is why we introducedeight gluon fields in the explicitly
gaugeinvariantboundaryconditions.Gluonsareconfinedinside the hadronphaseand quarksbecome
alsoconfined,as we shall see,becauseof the gluon gaugefields theyalwaysdragalong.

Now we cometo the importantpoint why the bag beingembeddedin the physicalvacuum as a
small droplet of hadron phaseis stable in its time evolution. We assumethat to createa vacuum
bubblein hadronphasetakesan amountof energyB perunit volume,andan amountof energy0 per
unit surface.B may be associatedwith the vacuumpressureexertedon the bubble: the energy
requiredto increasethe volume of the bubble by an amountÔV is B5V. The surfacetensiono is
associatedwith the surfaceenergyon the boundarybetweenthe hadronphaseand the “normal”
vacuumphase.

The pressureexertedby the gluon fields on the boundaryof the hadronis balancedout by the
volume energyB per unit volume (vacuumpressure)andsurfaceenergy r per unit surface.

The quark bagmodel is the inventionof the ingeniousM.I.T. groupwho haveintroducedvolume
tension (or vacuum pressure)to stabilize hadrons.The surface energy o per unit surface was
introducedby the Budapestgroupupondynamicalandphysicalconsiderations.

It is importantto notethataclosedhadrondomain in spaceis alwayscolorlessin the terminology
of quantumchromodynamics.This follows from the boundaryconditionsand accordingly,the color
electric flux of the gluon fields is always zero acrossthe surface.As a consequence,the triality
quantumnumberof a closedhadrondomainis alwayszeroin the quarkbagmodel.

The boundaryof the bag is transparentagainstleptons and the mediatorsof the electromagnetic
and weak interactions.Theseparticles(or fields) canpropagatein both phasesof the vacuumin the
normal manner.The two-phasepicture of the vacuum in the bag model is a strong interaction
phenomenon.

We do not attempt to derive a- or B from somemicroscopicstructureof the physicalvacuumin
gaugetheories,thoughit did not escapeour attentionthat the abovediscussedphysicalpicturemaybe
relatedto instantonsin q.c.d.,or to othervacuumphenomena.

For illustration,we shall briefly discussa simple field theoreticalmodel in the spirit of the quark
bagtheory.

1.2. Softbagin gaugefield theory

The Lagrangianof ‘t Hooft, and Kogut and Susskindwhich we shall study is not renormalizable,
thoughit deviatesfrom a renormalizableoneonly for small valuesof somefield with thedimensionof
mass.Therefore,the deviationfrom a renormalizabletheoryoccursonly in the infra-redregion.

The Lagrangian is an effective one in the sensethat higher order quantum correctionsfrom
masslessgluons in quantumchromodynamicsmaygive riseeffectively to similar modifications.

We shall forget about the non-Abeliancharacterof q.c.d. and simplify the calculationswith an
effective Abelian gauge field. The chargedparticles in their couplipg to the gauge field will be
representedby an externalsourcefunction J~(x).Let usconsiderfirst the Lagrangian

= — ~ ZF~(x)F~”(x)— J~(x)A~’(x),

where

F,,... = —



P. Hasenfratz and J. Kuti. The quark bag model 79

Our metric throughoutthe paperis (+ — — —). We set Il = c = 1 everywhere,exceptwhenh andc are
written out explicitly, for pedagogicalpurposes.

If Z werea constantas in electrodynamics,one could take it out from the kinetic energyterm:

A,~,—+ Z~2A,,,

~‘—~ ~ —Z~’2J~A~’.

One notes, therefore,that the interaction is proportional to Z~.We want to describe the
so-calledinfra-red effect that for vanishingmomentumtransfer,the effective coupling Z’ between
the chargesbecomesinfinite. Now if Z weremomentumdependentthena non-localLagrangianwould
be required.

Instead,Z will be allowedto besomefunctionof an auxiliary scalarfield ~ with thedimensionof a
mass.It is requiredthat Z(qs)-+O when q~—*O.

The completeLagrangianis definedthenas follows:

= — ~Z(p)F,,~F’~”+ ~ ~ — V(~’)— J
4,.A”. (1.1)

We shallassumethat V(~)>0 when ~� 0, and V(0)= 0. For calculationsone can take

1 22 4V(~)sm~ +A~

The infra-redeffect is incorporatedby requiring Z(9)—s’Ofor ~ —+0, and Z(~)—*1 for large ~ as it is
shownin fig. 1.2.

Onenotesthatthe Lagrangian(1.1) is gaugeinvariant,since~(x) is a neutralscalarfield, andonly
A,,(x) is transformedunderthe gaugetransformationA,,(x)—s’A,~(x)+8~x(x).

We shall study now Coulomb’slaw in the model. The Lagrangian(1.1) yields the Euler—Lagrange
equations

I
~.LV —

where~ is the “induction field”

D,.,.. = ZF,,~.

The functionZ(9) describesthe electric and magneticpolarizabilitiesof the vacuumas a physical
medium.This polarizabilityagainstthe gluonfield A,,(x) is controlledby theneutral,scalarfield q’(x).
For static field configurations,Z(p) correspondsto the dielectric constante, andZ

1(ç) is associated
with the magneticpermeabilityj.~:

e(q7) = Z(~), ~(~) = Z~(~). (1.2)

Z(’f)

Fig. 1.2. The dielectricconstantZ(ço) asa function of theauxiliary field g.
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Whenthe chargedparticlesarefixed sourceswe areinterestedin the following static solution:

J~=0, Jo=p(x),

D~1=0, D01=D~, i,j=l,2,3.

The energydensityis given by

~ V(~). (1.3)

To specify Z(p) at small valuesof w(x) we shall assumethat for ~(x)—*0,Z(~)=const-~. The
staticsolutionwhich emergesfrom a qualitativecalculationis shownin fig. 1.3.

An electric vortex developsbetweentwo point chargesof oppositesign at large distances.The
gaugefield aroundthe chargedpoint particlesdrives the scalarfield q~(x)to be non-zero,and it is
non-vanishingalongthe wholeelectricvortex. Fartheraway from the vortex configurationq(x) drops
to zero,andthe gaugefield vanishesthere.

The vacuummayexist in two phasesin this model. In the absenceof chargesthe scalarfield ~(x)
vanishesand the gaugefield cannotpenetratethere.This is the gaugefield non-supporting“normal
phase”of the vacuum.In a domainof space,however,wherechargedparticlesarepresentthegauge
field of theparticlesdrives~ to be non-zeroandthe domainbecomesanordinarypolarizablemedium.
It is the gaugefield supportinghadronphase.

The inductionfield D becomesconfinedin a vortex tubeof definite width andarbitrarylengthwhen
the distancebetweenthe point chargesis increasing.This electricvortex is similar to the dual string;
the potentialenergybetweenthe chargedparticlesis proportionalto the distancebetweenthem:

V(r) const-r.

The repulsionof the gluon field from the “normal phase”of the vacuumcanbe understoodas an
exercisefrom electrostatics.

We considera point chargeQ embeddedin a semi-infinitedielectric �~a distanced away from a
planeinterfacewhich separatesthe first mediumfrom anothersemi-infinitedielectric �2. The surface
is takenas the planez = 0, as shownin fig. 1.4.

The solution of the problem is given by the method of image charges.The electric field E is
derivablefrom a potential4 which is given for z ~ 0 by the formula

141=——, z<041TE
2 R3

ph~IC~\~Cuu~

_____ ¶ z

smooth transition region
‘1=0 hadron phase

Fig. 1.3. The electric vortex tube connecting opposite chargesin Fig. 1.4. The Static electricfield of a point chargeQ embeddedin a
‘t Hooft’s model, semi-infinitedielectric slab.
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wherethe imagechargeQ’ is locatedat the symmetricalposition with respectto Q,
(1’ — �1 — �2 (1

�~1 �2

while Q” is the chargeat the position of the physicalcharge Q as it is seenfrom the semi-infinite
dielectric�2

2�2 Q
�5 + �2

The semi-infiniteslab of dielectric�~correspondsin our terminologyto the “hadronphase”of the
vacuum,if � = 1 is taken,for instance.The semi-infiniteslabof dielectric �2 maybe associatedwith the
“normal phase”when �2 -+0. In this limit the inductionvectorD vanishesin the left half-spaceandit
becomestangentialto the surfacein the “hadronphase”(fig. 1.4).

Somethingvery similar happensbetweenthe two phasesin the above discussedfield theoretical
model.The differenceis that thegradientterm(Vç)2 in (1.3) makesthe transitionsmoothbetweenthe
two phasesand,of course,the shapeof the surfaceis determineddynamically.

There is a similar situationin the presenceof magnetic fields. Since the permeabilityp~of the
“normal phase” is infinite accordingto (1.2), the magneticfield H becomesperpendicularto the
surfacein the “hadron phase”: the boundarycondition on the magneticfield H at the surfaceof a
very high-permeabilitymaterial is the sameas for the electric field at the surfaceof a conductor.
Therefore,the magneticfield H cannotpenetrateinto the “normal phase”,similarly to the induction
vectorin the electrostaticcase.

The reflection coefficientR on the surfacebetweenthe two phases,for electromagneticwavesof
the gluon field propagatingin the “hadronphase”,is given by

�1=1.

When �2 -+0 thereis total reflectionon the surface.The gluonfield becomesconfinedto the “hadron
phase”.

Chargedpoint particles arealso confined to the “hadron phase”becauseof the gluon gaugefield
theyalwaysdragalong.

The field theoreticalmodel which we have presentedhere describesa soft bag with smeared
boundarysurfacebetweenthe two phasesof the vacuum.We would get a “hard” bagby neglecting
the kinetic term (8~)2 for ç in the Lagrangian(1.1),andrequiringZ(~)to be a stepfunction. In that
particular limit the boundarybecomessharpas in the phenomenologicalquarkbagmodelwhich is the
subject-matterof the presentpaper.

1.3. Gaugefield inside the bagand q.c.d.

We shallimagine that thereis abubblein hadronphasemovingin thephysicalvacuumin a Lorentz
invariantmanner.The bubbleis filled with an Abeliangaugefield A~(x),for the sakeof simplicity.

The relativistic actionW for this simplebag is written as

Wz~—~JdtJ ~ f d3x, (1.4)
bag surf bag
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whereF~,= c9,,,A.— ~ The first doubleintegral in (1.4) is extendedover the interior points of the
bag,for a given instant of time t. There is no gaugefield outsidethe bag. The secondterm describes
the actionfor the surfaceof the bagwhered25 is the infinitesimal surfaceareaand VT is the velocity
of the surfaceelementalong the normal vector of the surfaceat a given point. In otherwords, the
seconddouble integral in (1.4) is the three-dimensionalarea of the hypersurfaceswept out by the
surfaceof the bagin Minkowski space—time.The strengthof surfacetensionis setby the constanta-
with dimensionenergy/area,or length”3.

The last term in (1.4) is proportionalto the four-dimensionalvolume sweptout by the bag as a
whole in Minkowski space—time.For a given instantof time it is proportionalto thethree-dimensional
volume of the bag. The constantB has the dimensionof energy/volume,or length4. This term
describesthe vacuumpressureagainstthe bubblefrom the outside.

The action W is Lorentzinvariant,sinceit is definedin ageometricalmanner.
Variationof the gaugefield inside the bagyields Maxwell’s equationsin the interior points

= 0.

Variationof A~(x)on the surfacegives the boundaryconditionsfor the gaugefield

n~E=0, n
0E+nXB=0, (1.5)

wheren is the exterior,normal three-vectorto the surfaceata given point, and n0 is the velocity of
the surfaceelementalong n. The boundaryconditions(1.5) require the gluon E-field to be tangential
andthe B-field to be normal to the surfacein the instantaneousrestframe of the surfaceelement.

Variation of the surfaceelementsin the action principle 5W= 0 determinesthe dynamicalequation
for the time evolutionof the bubble’sshape:

~(E
2—82)~

5r2a-K+B. (1.6)

In eq. (1.6), K denotesthe meancurvatureof the surfaceat a given point in Minkowski space.
K is a dynamicalquantity which measuresthe curvatureof the hypersurfaceas embeddedin the

four-dimentional space—time.It contains the transversevelocity and accelerationof the surface
elementwith aforthcomingdiscussionin the following section.

For astatic surfacethereis greatsimplification in eq. (1.6):

~(E
2—B2)1

5= a-(l/R1 + l/R2) + B, (1.7)

wherehR1 and hR2 arethe principal curvaturesof the surfaceat a given point.
The static surfaceis a solutionof classicalbagdynamics,if fixed externalsourcesare coupledto

the gaugefield A~(x)inside the bag.
Equation (1.7) has a transparentphysical interpretation.It describesthe balanceof forces in

equilibrium. The first term on the right-handside of (1.7) describesthe surfacetension of the
boundarybetweenthe two phaseslike for an air bubbleembeddedin liquid phase.The secondterm B
actslike vacuumpressureagainstthe bubble.The left-handside of eq. (1.7) canbeinterpretedas the
gluon “field pressure”on the boundaryfrom the insideof the bag.It is balancedout in equilibrium by
surfacetensionandvacuumpressure.This is the contentof eq. (1.7).

The bag without quarks may be pictured as a gluon gas bubble moving in the otherwise
undetectablemedium of the physical vacuum.There is no qualitativechangein the picture when
quarksarecoupledto the gluonfield inside the bag.

The negativesign of the magnetic“field pressure”requiressomeexplanation.The right-handside
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of (1.7) is Lorentz invariant,sinceit is of geometricalorigin. Theleft-handsidemustbe alsoLorentz
invariantas guaranteedby the relation

—~F,.,,F’~”=~(E2—B2),

so that the electric field E2 andthe magneticfield B2 actwith oppositesign on the boundary.
Physically, the repulsive force exerted by the electric field on the walls of the bag can be

understoodfrom the simplemodelof subsection1.2. Thereis a polarizationsurface-chargedensityon
the planeat z = 0 betweenthe two semi-infinite slabsasgiven by

_Q �~—�~ d

— 2ir �1(�2 + �2) (p2+ d2)312’
wherep is the distancefrom the origin on the planez = 0. Insteadof usingthe imagechargeswe can
describethe fields in terms of the polarization chargedensity a-poi. When � = 1 and �2—~.0,the
polarizationchargeis of the samesignas Q. Thereforethe forcebetweenthe chargeandthe surfaceis
repulsive.

The situationis the oppositewhen a magnetic field is createdby, say, a magneticmonopoleg
whosepolarizationeffect will induceamagneticsurfacechargedensityof oppositesign, so that the
forcebetweenthe sourceof the field andthe surfacebecomesattractive.

The electric inductionvectorD of chargeQ cannotpenetrateinto thesemi-infinite slabof dielectric
�2 becauseof the shieldingeffect of the polarizationchargeon the surface.

The electric field E goesover into dielectric �2 smoothlyand it is non-vanishingthere. However,
the energydensity~ E . D vanishesin the semi-infinite slab ~2 when~2 -+0.

In the bagmodelwe makethe outsideregion completelyforbiddenfor the gaugefield A,. which is
not evendefinedthere.

The action W in (1.4) can be easily extendedto include non-Abeliangauge fields and colored
quarks.This will be donein the forthcomingsections.Apart from the two termsof surfacetensiona-
and vacuumpressureB, the actionW becomesidentical to thatof q.c.d. in the interior pointsof the
bag.

Quantumchromodynamicsbecamepopularamongmanytheoristsfor the following reasons:
(1) it explainsscalingin deepinelasticlepton—nucleonscatteringin terms of asymptoticfreedom;
(2) it allows for a spatially symmetricground stateof the nucleonin the terminologyof the static

quarkmodel;
(3) it givesa total crosssectionof electron—positronannihilation into hadronswhich is threetimes

largerthanwithout color, in approximateagreementwith the data;
(4) there is a hope that only color singlet states are observablein the theory with a possible

explanationfor quarkconfinement.
The last point is only a conjectureandthereareseriousdoubtsaboutits validity.

The field theoreticmodel with the effective Lagrangian(1.1) illustrateswhat we would like to get
out from q.c.d. phenomenologicallyas a physicalpicture for hadrons.

There is now moredirect indication that the structureof the physicalvacuumin a gaugetheoryas
q.c.d.mayplay an importantrole. The so-calledpseudoparticles,or instantons,mayberesponsiblefor
the structureof the vacuumin closerelationto the problemof quarkconfinement.

The vacuumin the presenceof pseudoparticlesactslike ashieldingplasmafor electric flux linesin
a2+ 1 dimensionalgaugemodel.This shieldingeffectgeneratesthe confinementforce betweenquarks
in the model. The implications of instantonson hadronstructureare being intensively explored in
quantumchromodynamics.
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There is a hope in q.c.d. that as a result of detailedand ingenious“microscopic” calculationsthe
additionalbinding terms a- andB turn out to beunnecessaryin the action W of eq. (1.4). In that case
quantumchromodynamicsin itself would beable to bind quarksand gluonsinsidehadrons.

The quarkbagmodel, on the otherhand,is a phenomenologicaldevicewhich maybe a reasonable
descriptionfor hadronsevenif the final microscopictheory is quite different from anythingwhat we
areguessingtoday.

We shall bring up an interestingexamplefrom the history of nuclearphysicswhich is somewhat
analogousto our model-buildingphilosophyof the quark bag model.

1.4. Theliquid drop modeland single particle spectra

A heavynucleusis bestdescribedin telegraphicstyleas a bagof nucleons.
In amoresophisticatedmanner,the closepackingof the nucleonsin the nucleusandthe existence

of arelatively sharpnuclearboundaryhaveled to the comparisonof the nucleuswith a liquid drop.
The empirical binding energiescan be interpretedthen as a sum of surfaceenergy,volume energy,
andelectrostaticenergyof the nucleardroplet.The treatmentof the nucleusas adeformabledroplet
is quite successfulin the theoryof nuclearfission.

According to the liquid drop model,the fundamentalmodesof nuclearexcitationscorrespondto
collectivetypes of motion,suchas surfaceoscillationsandelastic vibrations.

New progressin the theory of nuclear spectrawas obtainedthrough the developmentof the
so-called single particle model. This model assumesthat nuclear stationary states,like electron
configurationsin atoms, can be approximatelydescribedin termsof the motion of the individual
particlesin an averagefield of force.

The single particlemodelexplainsthe stabilityof certainnuclei, thosewhich possessclosed shells
of protonsandneutrons.The model is also successfulin accountingfor the spinsof nuclearground
statesandnuclearmagneticmoments.

The liquid drop modeland the single particle model representoppositeapproachesto the problem
of nuclearstructure.Eachrefers to essentialaspectsof nuclear structure,and it is expectedthat a
synthesisis necessaryfor adetaileddescriptionof nuclearproperties.

The necessityof this synthesisis clearly indicatedby the observedbehaviourof nuclearquadru-
polemoments.Thoughthequadrupolemomentsof nucleargroundstatesgive definite evidenceof the
shell structure,for manynuclei, the magnitudeof the quadrupolemomentsis too largein comparison
with the predictionsof the single particlemodel. This suggeststhat the equilibrium shapeof those
nucleideviatesfrom sphericalsymmetry.

A simpleexplanationarisesif one considersthe motion of the individual particlesin a deformable
nucleus.The centrifugalpressureexertedby the particleson the walls of the nucleusmay lead to a
considerabledeformation. The quadrupole moments associatedwith those deformationsare in
accordancewith observations.

An instructiveschemeto demonstratethis idea is that wherethe nuclearenergylevels aretreated
as due to a filling-up of individual particlelevelsfor nucleonsin asphericalbox with infinite walls. It
is assumedherethat the stronginteractionof eachnucleonwith all othernucleonsin the nucleuscan
be approximatedas a roughly constantinteraction potential over the nuclear volume so that the
nucleonsform a “self-consistent”box(or bag).

This bag is deformable,and thereare dynamicaldegreesof freedomassociatedwith the surface
deformations.Whenan evennumberof protonsor neutronsarepresenttheypair off to give zero spin
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andmoments.We shallassumethatfor closedshellnuclei the nucleusis treatedas an incompressible
dropletof constantdensity~ andonly the surfaceandCoulombenergytermsareconsidered.

For odd A nucleigreatsuccessis obtainedby associatingthe spin andmomentsof the nucleuswith
the odd valencenucleonalone,outsidethe core.The valencenucleonis coupledto the corethrough
the collective variables of the droplet. This coupling arises from the boundarycondition for the
valencenucleon’swavefunctionat the surfaceof the nucleus.

The descriptionof odd A nucleiin termsof the dynamicalvariablesof the valencenucleonsoutside
the core,togetherwith the collectivevariablesof the nucleardroplet maybe calledthe bagmodel of
the nucleus, in our terminology. The model is quite successfulin describingthe single particle
excitation spectraof odd A nuclei.

The analogywith the quarkbag model is almostself-explanatory.The valencequarksof hadrons
are similar to the valencenucleonsof nuclei,andthe dynamicalvariablesof the bag(hadrondroplet)
are analogousto the collectivevariablesof the nucleardroplet.The volume energyof the nucleusis
like the volume energyBV of the bag.

In both models,the surfaceenergyis anessentialpart of the droplet’s dynamics.
Let the surfaceof the nucleusin polar coordinatesbe given by p(t~,ç). We expandp in spherical

harmonicswriting

p(i~,q’) = + ~ PimYim(1~,c))~ (1.8)

wherePo is the radiusof the nucleusin its original equilibrium shapefor sphericallysymmetricclosed
shellnuclei. The function Vim is the normalizedsphericalharmonicof the order I, m. The expansion
parametersPirn arethe coordinateswhich describethe deformationof the nuclearsurface.

The idea of a continu us surface does not apply if we consider surface elements of linear
dimensionscomparablewith thedistancebetweenthe nucleons.The quantitiesp,m thereforelosetheir
meaningif I becomesof the orderof, or largerthan,A”3.

This remarkis relevantperhapswhenwe dealwith the quantumfluctuationsof the hadrondroplet
in the quarkbag model. Since the bag is a phenomenologicalmodel to someunknownmicroscopic
dynamics,thereis a hopethat a physicalcut-off is provided by the microscopicstructurefor short
wave-lengthfluctuationsof the surface.We mayfeel releasedthereforefrom the burdenof including
an infinite setof collectivebagcoordinatesin practicalconsiderations.

If the coefficientsp,~are small in (1.8), the potentialenergyof the deformationstakesthe form

V~>~CIP~Plm. (1.9)

The associatedkinetic energyis given by

K = ~ BtIji*n
4iirn. (1.10)

For an incompressiblenucleusof constantdensity ~, one finds

B, = jsp~/l, (1.11)

assumingnuclear matter to have irrotational flow. If the chargeof the nucleusZ~e is uniformly

distributedover its volume,one obtains

c, = (1— 1)(l + 2)p~o— ~— 21+1~i~2 (1.12)
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wherea- is the surfacetension.As an approximateestimateof a- we mayusethe averagevalue

4irp~a-= 15.4A213MeV (1.13)

deducedfrom nuclearbinding energies.
The surfacedynamicsis determinedby eqs. (1.9—1.12). The Hamiltonian of the nuclearsurface

takesthe form

U — a’ ~ tj_ V I n * rr *
12surf — 1’~“1~ V — Z., 1j’hhlmhhlm ‘T 2CIPImPIm

i,m t~ I

whereHim is the momentumconjugateto p,~.The surfaceoscillationsmaythus be consideredas a
systemof harmonicoscillatorswith frequencies

(1.15)

and masscoefficientsB
1.

It is clear from eq. (1.8) and eq. (1.10) that only internal motions of the surfacetransverseto its
extensionin spaceare dynamical. That is, the kinetic energy K dependsonly on the transverse
velocities of the surfaceelements.The longitudinal expansionor shrinkageof the surfaceis also
physicalbut it is somehowassociatedwith “potential energy”andnot kinetic energy.

There is a similar situationin the surfacedynamicsof the bagmodel formulated in a relativistic
manner.

For spheroidaldeformationsthe surfaceand Coulombenergyterms of the nucleuspartly cancel
and give an increasedenergy proportional to �2 on distortion from the sphericalshape,where
� = (b — a)/p0 (a andb are the semi-axesof the ellipsoid) is proportionalto the distortion

i~Esurt+ 1~Ecb= �
2(2.74A213— 0.054Z2A”1/3) (1.16)

The energylevelsof the spheroidalbagcan be specifiedby the samenotationas for the spherical
box. The degeneracyof eigenvalueswith respectto m for agiven valueof I is removedandthereis a
splitting which is linear in � and dependson 1 and m2. Distortion to oblate disk shapelowers the
kinetic energy for ImI= I and increasesit for m2<<l2. One notes that 1 is not a strict angular
momentumquantumnumberin this problem.

The expectedeffect of these considerationson the nuclear shape is that for closed shells
IkE const~�2, so e= 0 is most stable. Secondly, for a valencenucleonoutside a closed shell,
IkE C

1�
2— ~2� if � is chosenpositivefor the oblatecase.Then e= c

2/2c,gives the stableshapefor
minimumenergy.

The linear term can be easily understoodby noting that the kinetic energy K = E — V is
proportional to h

2/Mp~and, for a Bohr orbit with m = I, the particlegoes around the equator.
Therefore Po is replacedby b > Po and one finds IkK = —~�K

0for ab
2 fixed and m = I ~ 1. This

asymptoticresult for large I works quite well down to I = 4.
Similarly to thesenucleardeformationswe expectcigar-like bag shapesfor high angularmomen-

tum excitationsof hadrons.
Since the nucleonscannotpenetratethrough the nuclearpotentialwall, a couplingarises between

the particles and the surface. This coupling between the single particle motion and the nuclear
deformationgives rise to acertainsharingof angularmomentumbetweentheparticle andthe surface
(seefig. 1.5).

The angularmomentumstructureof the stationarystatesmay thereforedeviateessentiallyfrom
the caseof the pure single particle model.While the latter modelmay be called quasi-atomicmodel,
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Fig. 1.5. The schematicpicture of a nucleuswhosecore is describedby thecollective variablesof an incompressibleliquid dropletin octuple
excitation.The odd valencenucleon’smotion is coupled to theoctuple surfacevibration. The arrowsindicatethat thevibration of the surface
carriesangularmomentum.

the combined “bag model” is somewhatanalogousto molecular structures,where there is an
interactionbetweenelectronicand nuclearmotion.

This “bag model” for the nucleusis a clever phenomenologicaldevicewhich describesthe main
featuresof nuclearspectrafor odd A nucleiwithout beinginvolved in the microscopicdynamicsof A
protons and neutrons.The microscopic dynamics is ultimately governedby complicatedforces
betweenprotonsandneutrons.

In the nextsectionwe shallreview the first extendedparticle model of the geometricalvariety. It
provesto be a mostusefulintroductionto quarkbagdynamics.

2. Dirac’s electron bag model

In 1962 Dirac madea proposalfor an extendedelectronmodel. He was mainly motivatedby the
existenceof the muon.The muon was interpretedin his model as the first radial excitation of the
electronat the bottomof an excitation spectrumfor extendedleptons.

As far as we know Dirac’s Lagrangianmodel was the first one to describeextendedobjects in
four-dimensionalrelativistic pictureabandoningconventionalnon-linearfield theory.

It is instructiveto see how the electrongetsstabilizedby a tensiontypeforce in the Dirac model,
as a usefulintroductionto the bagmodelof quarkconfinement.

The conceptof an electronof finite size is an old one, first proposedby Abrahamand Lorentz.
Dirac hasintroducedspecialPoincaréstressesto stabilizethe extendedAbraham—Lorentzelectronin
afully relativistic manner.

The electronis assumedto have a chargedconductingsurface. Outside the surfaceMaxwell’s
equationshold. Inside the surfacethere is no field. The electronis stabilized againstthe Coulomb
repulsionof its surfacechargeby a non-Maxwellianforce of the type of surfacetension,or Poincaré
stresses.It may be pictured as a bubble in the electromagneticfield whose energyexpression,in
addition to theelectromagneticfield energy,containsa positiveterm proportionalto the surfaceof the
particle.

Dirac’s bubblemaybe called the bagmodel of the electron,though this bagis empty inside. The
pictureis justoppositeto what weadvocatedfor hadrons:the gaugefield is “confined” to the exterior
of the electronbag.

2.1. Theactionprinciple

In a four-dimensionalrelativistic picture the surfaceof the extendedelectron appearsas a tube
with a three-dimensionalhypersurface.The action W is written as

W= W0+ W~,
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where

W0—~J ~ (2.1)

x

1>1

is a four-dimensionalintegralextendedover the Minkowski space—timeoutsidethe tube.
We shall work with general curvilinear coordinatesx~.The surfaceof the extendedelectronis

describedby x’ = 1 in the curvilinear coordinatesystem,thoughany other specification would be
allowed.

For reference,we introduce a rectilinear and orthogonal system yA(x). The functions y”(x)
describethe x coordinatesystemin termsof the y coordinatesystem,with the metric

g,.~=

in the x system.y,~,,.denotesayA/ox~and Greekcapitalsuffixeswill alwaysrefer to the y coordinate
system.J2 is the determinantof —g,,., in eq. (2.1).

We take now as generalcoordinatesof the extendedparticle the gaugefield potentialA,.(x),and
yA(x) for all valuesof x~with x’ ~ 1. No generalcoordinatesareassociatedwith the interior pointsof
the bubble.

The generalcoordinatestogether with the fixed function x’ = I determinethe surface of the
electron,and the electromagneticfield relativeto the y system.A physically unimportantcurvilinear
systemof coordinatesoutsidethe electron’ssurfaceis also determinedby the generalcoordinates.

The actionfor the surfaceis written as

W.= — a- J M dx°dx2 dx3, (2.2)

x’=l

where M2 is the determinantof ~ae (a,b take on the values of 0, 2, 3 here, and later on). W~is
proportionalto the three-dimensionalareaof the tube sweptout by the surfacethrough its motion in
Minkowski space—time.

The strengthof surfacetension,and thereforethe equilibrium size and massof the electron, is
determinedby the positive constanta- of dimensionenergy/area,or length”3.

We haveto stressherethe importanceof the curvilinearcoordinatesystemx~.In rectilinearand
orthogonalcoordinatesy~’the action for the electromagneticfield,

W
0 = —~ f d

4yFAA.F~”

outside

andthe action for the surface,

W
5—a- J d

3S(y)
surf

are not appropriatefor derivingthe Euler—Lagrangeequationsof motion.
Namely,to havea correctaction principle,we mustexpressthe action W in termsof variablesq

which describe the physical systemfor all spaceand time under the condition that, when small
variationsareperformedin all the q’s, SW is a linear functionof the Sq’s.
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To describethe surfaceof the tube, onemay introduceparametersu,, u2, u3 to specifya general
point on it and then the four coordinatesyA(u) of the point are takenas the variablesq for the
surface.The four-potential AA(Y) throughoutspace—timeoutsidethe surfaceis also takenas general
coordinateq. However,SWis not a linear functionof the variationsSq’s.

If onemakesa variationSy”(u) describingthe surfacebeingpulled out infinitesimally,SWwill not
be minusthe SW for — Sy~’(u),correspondingto the surfacebeingpushedin infinitesimally,sincethe
field inside the surfaceis keptzero identically. The otherproblemwith the coordinatesy is that the
dynamical variables AA(y) defined only when y is outside the surfacerequire a time-dependent
definition for a moving surfacemaking the canonicalformalismimpossible.

The difficulties canbe circumventedby working in an appropriatecurvilinearcoordinatesystemas
introducedabove.

In the variational processwe do not changethe equation x’ = 1 for the surface. An arbitrary
variationof the electron’ssurfacecomesfrom varyingthe coordinatesystem:

YA(x) y’~’(x)+ SyA(x).

After an arbitraryvariation SA,.(x), SyA(x) we find

SW= — J {(JF’~’),~M~+ [J(F,. ‘~F~’
3— ~ pl~Pga~)y~]

85yA} d
4x

xi>’

— J JP’SA~dx°dx2dx3

xl=’

— f {J(F,.ap~eI— ~ — a-(Mc~yA.a),b}Sy”dx°dx2 dx3, (2.3)

xl=’

wherecab is the reciprocalmatrix to gab.
From the first line of eq. (2.3) we getthe Maxwell equationsin curvilinearcoordinates

(JF”)r = 0. (2.4)

The secondterm in squarebracket in the first line of eq. (2.3) vanishesas a consequenceof the
Maxwell equations(2.4). This is expected,sincethereis no Euler—Lagrangeequationdescribingthe
arbitrarymotion of the curvilinearsystemof coordinatesoutsidethe electron’ssurface.

Dirac requires A,.(x) = 0 on the surfaceof the electronandthis constraintis preservedduring the
variational process.Therefore, the secondline of eq. (2.3) vanishesautomatically.The constraint
A,.(x) = 0 for the gaugefield on the surfaceimplies the relation Fab = 0 which can be written in a
covariantmanner:

= 0, (2.5)

wheren,,, is a unit normal to the surfacef(x) = 1,
n,,~=

In our casef(x) = x1 and n,~,takesthe form

n,, = ~ 1,0,0).
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To establisha conventionwe choosen to be the exteriornormal to the surface.
The dual field strengthtensorF,.,, = ~ appearsin eq. (2.5). Written out in the y coordinate

system

n-B =0,

and (2.6)

nXE—n0B=0, atx’l,

wheren is thethree-dimensionalnormalvectorto the surfaceat a given point andn0 is the velocity of
the surfaceelementalong n.

The boundaryconditionsin eq. (2.6) are the familiar ones for a conductingsurface,namely, the
tangentialcomponentsof the electric field andthe normalcomponentof the magneticfield arezero in
the instantaneousrestframe of the surfaceelement.

The third line of eq. (2.3) gives the equationof motion for the surfaceof the extendedelectron

= a-i”’ (Mg’~’/g”)~,., for x’ = 1, (2.7)

or in covariantnotation

= —a-J”
1(Jn~),,,,. (2.8)

Apart from a factor 2a- the right-handside of eq. (2.8) is the meancurvatureof the electron’s
hypersurfacein Minkowski space. This is not unexpected,since the electron’s hypersurfacein
space—timewithout coupling to the electromagneticfield would correspondto a minimal surfaceas a
consequenceof the geometricalaction W

5. The meancurvaturevanishesin eachpoint of a minimal
surface.

2.2. The spectrum of radial vibrations

As we havediscussedpreviously the motion of the external points in the curvilinear coordinate
systemis not physical,which is reflectedin a certain“gauge” freedomin choosingthe mappingy”(x).
We shall choosea “Coulomb-typegauge”, that is a mappingwhich is describedby the physically
importantsurfacevariablesonly.

For a spherically symmetric electron whose centre is at rest p(t) designatesthe radius of the
surface.In curvilinearpolar coordinates

= x°(=t),

= x’p(t) sinx
2 cosx3,

y2 = x’p(t) sinx2 sinx3,

y3 = x’p(t) cosx2,

wherethe polar anglesi~ and~ areidentified with x2 andx3, respectively.The meancurvatureof the

vibratingsurfaceis given then by the following expression
1 _,(Mg’~\ — I d p 1 (29)

~ gfl )~,.— 2dt(l_~i2)~2+p(l_íi2)~2

Since there is no electric monopole radiation in Maxwell’s theory, outside the surface the
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electromagneticfield is simply the staticCoulombfield of aspherewith radiusp(t). Thenthe relation

—~ F,.,,FCV = , a -f—, (2.10)
8irp (t)

follows, and the equationof motion for p(t) is given by

a /d p 2 \
4ia-~-~(1 — p2)5/2 + ~(1—

1j2)1/2). (2.11)

The latter is a consequenceof eqs.(2.7, 2.9, 2.10).
The equilibriumradiusa of the electronis calculatedby taking p = 0 in eq. (2.11):

a
3~a/I6ira-. (2.12)

In staticequilibriumthe Coulombrepulsionof the surfacechargeis balancedby the surfacetensionof
the bubble

~E2 a-((l/p)+(l/p)).

Equation(2.11) can be interpretedas the Euler—Lagrangeequationderivedfrom the Lagrangian

L = — a-4irp2(1— ~2)i/2 — a/2p,

wherep(t) is the dynamicalvariable.

Theenergyof the oscillatingelectronis aconservedquantity. It is given by

E = a-(4irp2/(1— p2)1/2) + a/2p. (2.13)

The first term in eq. (2.13)is the surfaceenergywith an expectedrelativistic factor (1 — ~2)s/2 in the
denominator.It is just a--times the surfacearea when the surfaceis instantaneouslyat rest. The
secondterm in eq. (2.13) is recognizedas the Coulombenergyof the extendedelectron. In static
equilibrium it is twice as muchas surfaceenergy.

For agiven valueof E the surfaceperformsnon-linearoscillationsaroundthe equilibriumradiusa.
The classicalturningpointsof the oscillatorymotion arep, andP2 as shownin fig. 2.1.

s~
1a ~

Fig. 2.1. The sum of the Coulombenergyand surfaceenergywithout thekinetic term is shownhere.At a given energythereis a non-linear
oscillationbetweenthetwo turning points.
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The staticenergyin equilibrium is

E~tr~a/a, (2.14)

whoseone-third is surfaceenergy.
Around the equilibrium radius p = a the surfacecan perform harmonicsmall oscillationswith a

frequency

2irv = \/6/a.

The energyof one quantumwith this frequencyis

hi.’ = ~V6E5~/a, (2.15)

which is approximately448E5~.The correspondingclassicalamplitude is a large one and the energy
spectrumof the extendedelectroncannotbe calculatedfrom a simpleharmonicapproximationaround
the staticequilibrium.

Therefore,we turn now to the Hamiltonianformulation of sphericalvibrations.
Introducingthe canonicalmomentum~j conjugateto p,

= aL/o,i,

the Hamiltonianof the sphericallyvibratingelectronis given by

H = (p2+ l6ir
2a-2p4)~’2+a/2p. (2.16)

The classicalPoissonbracketrelation

{p, ~}p= 1 (2.17)

is valid betweenthe canonicallyconjugatevariablesp and ~.

The semi-classicalquantization proceduregives a first idea about the spectrum of spherical
excitationsin analytic form. The Bohr—Sommerfeldquantizationconditionis

2 f ~(p) dp = 2~h(n+~), n = 0. 1,2,.., (2.18)

where~(p) is expressedfrom the relation

2 2 241/2E(’ij +I6ira-p) +a/2p. (2.19)

The constant on the right-handside of eq. (2.18) comesfrom the contributionof the turningpoints

p, and P2 to the semi-classicalapproximation.The value~ is correctfor smoothpotentials,and the
Coulombterm a/2p in the limit a-+0 requiresa modified numberbecauseit actslike a rigid wall at
p = 0. Only the theoreticalfoundationof eq. (2.18) basedon the Schrödingerequationof the system
canfinally justify this intuitive procedure.

The first few energylevels as determinedfrom eqs.(2.18,2.19)aregiven belowin units of (4ira-)”3

E
0= 1.94

(41Ta-~~
3- = (2.20)

E
3 = 5.66.
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For large n we find asymptotically

53E,~n2’3, (2.21)

whereE~,is the classicalenergyof the staticbubblein equilibrium. The spectrumis not equidistantas
in the caseof aharmonicoscillator.

For large excitationsthe Coulomb term acts like a rigid wall at p = 0 and the spectrumbecomes
similar to that of the squareroot Hamiltonian for a non-linear oscillator with potential energy
a-2(4irp2)2 solvedin the region p E(0, en). The non-linear oscillator spectrumgoes asymptoticallyas
E~-~ n4~3hencethe power~in the “squarerooted” spectrumof eq. (2.21).

We note from eqs. (2.14) and (2.20) that the groundstateenergyE
0 43.3E5~is muchlargerthan

the classicalenergyof the static bubble.The surfaceoscillationsof the Bohr—Sommerfeldorbits are
largeand strongly anharmonic.

The rigorous quantizationof spherical vibrations starts from eqs. (2.16) and (2.17). There we
replacethe Poissonbracketwith the quantummechanicalcommutator

[p,~]=ih.

In coordinaterepresentationthe surfaceof the extendedelectronis describedby the quantum
mechanicalwave function çI,(p), and the kinetic energyoperatoris representedby

— h
2(d2/dp2).

In order to define ~2 as a Hermitianoperatoron the interval p E (0, en), we requirethe wavefunction
i/e(p) to vanishat p = 0.

The Hamiltonian in eq. (2.16) acts upon 4r(p) as a non-local integral operator. The stationary
Schrödingerequation

[(~2 + a-2(4~p2)2)”2+ (a/2p)]~/r(p)= Eçlsr(p) (2.22)

gives the level spectrumof the extended“electron bag” in sphericalapproximation.The Coulomb
barriera/2p in eq. (2.22) requiresthe wave function i/’(p) to vanishat p = 0 as p~’where

a = —2A ctg~irA.

The mathematical interpretation of the square root operator on the left-hand side of the
Schrödingerequationis as follows. First, we choosea completeorthonormalset of vectors in the
Hilbert spaceas the solutionsof the eigenvalueequation

[~~+V(p)]~n(p) = �ncon(p), (2.23)

where

V(p) = a-2(4irp2)2.

The boundarycondition~~(0)= 0 is requiredfor the solutionsof eq. (2.23).
Sincethe squareroot operator[~2+ a-2(4~rp2)2]”2is diagonalin the abovedefinedmatrix represen-
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tation,it can bewritten as a non-local integraloperator

[~2 + a-2(4irp2)2]2I~)-*Jdp’K(p, p’)4~(p’),

K(p, p ) = �,, p~(p)p,,(p) (2.24)

actingupon the statevectorsof the Hilbert space.
The Schrödingerequationof the extendedelectron’seigenfunctionsbecomesthen

f dp’K(p,p’)i/i(p’) + ~- sfi(p) = Ei/i(p). (2.25)

This integralequationcanbe solvedby numericalmethods.The kernel K canbe approximatedas

K KN(P, ~ = �~2~(p)~(p’), (2.26)

where�~and p,
1(p) areobtainedfrom eq. (2.23) numerically.

Given the approximateexpressionof eq. (2.26) for the kernel K, the Schrödingerequation(2.25)
can be written in matrix representation,with the expansion

= ~ b,,ço,,(p)

for the eigenfunctionsof Dirac’s bubble.From the solutionof the matrix equationwe get the energy
spectrumand the wave functions.

On a large basis with N = 40 we get very accuratesolutionsfor the first few energylevels and
eigenfunctions:

E0= 1.95

E1 = 3.42

(4ira-Y”
3 E

2 = 4.61 (2.27)
E3= 5.67.

~t(o) f0) -t(2)

1 ~~ical~dius 2

Fig. 2.2. The quantummechanicalwavefunctionsof thesurfaceare Fig. 2.3. The probability density is given for finding the extended
shownfor theground stateand thefirst andsecondexcited states. electronwith radius p in itsground state.
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One notesthe good agreementwith the preliminary results of the semi-classicalapproximationas
given by eq. (2.20).

The correspondingeigenfunctionsare shownin fig. 2.2. The ground state is nodelessas expected,
and eacheigenfunctionhasone more node than that correspondingto the next lowest eigenvalue.
Figure 2.3 showsthe probability distribution kPo(p)12 for finding the bubblein its ground statewith a
radius betweenp and p + dp. It is peakedfar from the value of the extendedelectron’s classical
radius,due to the largequantumfluctuationsof the surface.

The centerof masscoordinateof Dirac’selectronmaybe treatedin the quantizationprocessalong
the line of general methods available for extendedobjects.Lorentz invariance is, however, an
interestingfeatureof the model alreadyat the classicallevel.

2.3. Theenergy-momentumtensor

Dirac’s extendedelectron has correct Lorentz transformationproperties in contrastwith the
Abraham—Lorentzelectronmodel.The specialPoincaréstressesintroducedby Dirac compensatefor
the Maxwell stressesmaking the total self-stressvanishin the restframe.

In the Abraham—Lorentzmodel the self-stressdoesnot vanish. In fact, it can be shownthat its
contributionto the momentumis just one-thirdof thecontributionfrom the self-energy,leadingto the
famousand troublesomefactor of ~ in the inertia of electromagneticenergy,evenfor non-relativistic
velocities.

We shall see now that it is impossibleto break up the rest mass of the Dirac electroninto an
electromagneticcontributionand surfaceenergyin a Lorentz invariantmanner.The separateparts
behave differently under Lorentz transformations,only the total energy (or mass) has correct
transformationproperties.

The energy-momentumtensorof the “electronbag” is calculatedin the y coordinatesystem.So far
we havekeptthe y coordinatesystemrectilinearandorthogonal.Now we shall vary the y coordinates
around the rectilinear and orthogonalcoordinatelines. The metric tensorof the y systemwill be
designatedby YAK•

The energy-momentumtensorT~’(y) in rectilinearand orthogonalcoordinatesis definedin terms
of the variationof the action W as

SW= —~fd4y(—det~ (2.28)

whereSYAK(y)correspondsto an infinitesimal variationof the rectilinearand orthogonalcoordinates.
The expressionfor SWin eq. (2.28) is the changeof the action W for this variation.

The actionof the extendedelectron,as we have seen,is W = W
0+ W5. Variation of the elec-

tromagneticpart W0 with respectto the rectilinear and orthogonal coordinatesdeterminesthe
well-known energy-momentumtensorof the electromagneticfield outsidethe bubble.

We shall calculateherethe contributionof the surfaceto the total energy-momentumtensorof the
extendedparticle.First, onenotesthat V/. maybe written in the following form

W.= — a- J. . fdx°dx
2 dx3 d4y54(y — y(x°, x2, x3))\/detgab, (2.29)

where
yA(xO x2, x3) = yA(xO x’ = 1, x2, x3),



96 P. Hasenfratz and J. Kuti, The quark bag model

and
A K

~ab = Y.aY.bYAK

is the metric tensoron the surface(a,b = 0, 2, 3).
Variation of gab yields

SM= ~Mc”y~y~SyAK, (2.30)

whereM = Vdet~ae was definedbefore,andc~ü~is thereciprocalmatrixto gab. Variation of W. in eq.
(2.29)togetherwith the relationof eq. (2.30) determinesthe energy-momentumdensity T~”(y) of the
surface:

T~’<(y)= a-f dx°dx2 dx354(y — y(x°,x2, x3))Mc~y~y~. (2.31)

It vanishesoutsidethe surface,as expected.
The total four-momentumassociatedwith the surfaceof the extendedelectronis definedby

P~~=fT0~~d3y,

with the choicex°= y°, onewrites

= a-f dx2 dx3Mcoby~(xO, x2, x3). (2.32)

The energy-momentumfour-densityp ~‘, as generatedby surfacetensionin agiven point (x°,x2, x3)
of the surface,follows from eq. (2.3):

A ObA
p~ —o-ivic y.~.

After similar considerationswe find the angularmomentumtensorM~~Aof the surface,

M~A=f dx2dx3(y1~p~”—yApK)

For illustration of the formula in eq. (2.32) we shall calculatethe energycarriedby the closed
surfaceof the bubble.The surfaceis describedin polar coordinatesby p(~,~, t). M in eq. (2.32) can
be expressedin termsof p(i~,~i, t) andits derivatives,

1 1 1/2

~ -

The surfaceenergyP~is calculatedfrom eq. (2.32):
1/2

~ ~ +z~2~p.~) - (2.33)

Whena surfaceelementis at restinstantaneously(p = 0), its contributionto the surfaceenergyP°.
becomesproportionalto the surfaceareadf

1 1 1/2

dp~= a- dp d(cos~)P2(l +~ + ,2 sin2 ~ = a- df,

as expectedfor surfacetension.
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For non-relativisticmotion of the surfacewe mayapproximateP~in eq. (2.33) by using1i
2 ~

P~= a-f df{1 + ~2 cos2� + O(~~)}. (2.34)

In eq. (2.34),� is the anglebetweenthe normalvector n of the surfaceelementandthe positionvector
of the surfacepoint. Onenotesthat only the projectionof the velocity vectorv alongn appearsin the
expressionfor P~.

Surfacetensiona- multiplied by the surfaceareadf

dp, =a-df

may be identified in eq. (2.34) with the inertial massof the surfaceelementdf. By inspectionof eq.
(2.32) one finds that the three-momentumdensity dp. of a surfaceelementis alwaysnormal to the
surfaceand its magnitudeis d~pcos� in the non-relativisticlimit.

Reparametrizationinvariance of the geometricalaction W
5 explains why we have found no

three-momentumdensityassociatedwith the longitudinal motion of the surfaceelementdf. The action
W~is invariant under any continuoustransformationof the surfacepoints which can be simply
describedas the reparametrizationof the coordinatelines on the surface.

The longitudinal motion of a surface element in the surface can always be described as
reparametrizationof the coordinatelines. This motion is, therefore,not physicaland thereis no
three-momentumassociatedwith it.

We shall return now to the Lorentztransformationpropertiesof Dirac’s extendedelectron.The
exactstaticsolutionis

p(’~,~, t) = a,

andthe electric field strength

e r
‘tirr r

describesCoulomb’s law. Thereis no magneticfield B in the restframe of the bubble.
The electrostaticfield energyMEM = aI2a is interpretedas the electromagneticrest massof the

extendedelectron.The restmassof the surfaceM5 = a-4ira
2is givenby the staticsurfaceenergy.The

relation

MEM = 2M
5

is valid in staticequilibrium.
We shall perform a boost on the particle along the third axis with boost velocity v. The

electromagneticenergyafter the boostis

P~M= ~f (E
2 + B2) d3y = MEM(1 + ~v2)/(1— v2)”2. (2.35)

The surfaceenergyof the boostedelectronis determinedfrom eq. (2.33):

P~urf= M’
5(l — ~v

2)/(l— v2)”2. (2.36)

Onenotesfrom eqs. (2.35) and (2.36)that only the sumof the electromagneticenergyand surface



98 P. Hasenfratz and J. Kuti, The quark bag model

energytransformsas the zerothcomponentof a Lorentz vector,

P~M+ P~urf= (MEM + M5~rf)/(1— v
2)”2,

whereMEM + Msurf= 3a/4ais the staticenergyof the extendedelectronat rest.

The third componentof the surfacemomentumvectoris calculatedfrom eq. (2.32),
P~urç= ~/l.’f

5v/(l— v
2)”2.

The momentumP~urtis only one-third of what is naively expected,sincethe motion of the surface
elementsunderthe boostis mainly longitudinalalongthe surface.

The third componentof the electromagneticfield momentumis the same as in the Abraham—
Lorentzelectronmodel:

,-,3 ~ ui 2~1/2
I-EM—’1JvIEMv,~1—v

However, the sum of the surface momentum and field momentum has correct transformation
properties,

3 3 21/2Psurf+PEM = (M
5+ MEM)vI(l — v ) - (2.37)

The relation MEM = 2M5 which is the balanceof surfacetension and Coulomb repulsionin static
equilibrium is usedin the derivationof eq. (2.37).

2.4. Instability

Dirac’s extendedbubble is not a realistic electron model yet. He interpretedthe muon—electron
massdifferenceas a rather successfulapplicationof the model, in the following sense.The massof
the electronwas identified with the static,classicalenergyof the bubbleatrest,as given by eq. (2.14).
The muon energy, as the first radial quantum excitation of the classical ground state in Dirac’s
interpretation,was calculatedby putting n = 1 in the Bohr—Sommerfeldquantumcondition of (2.18)
and ignoring the factor ~for zero-pointfluctuations.Accordingly, the massratio is

m,./m~ 53, (2.38)

not very far from the experimentalvalue.
However, thereis no justification for ignoring the effects of the zero-point fluctuations on the

spectrumof the extendedelectron.We observefrom eq. (2.27)that the ratio is different

EI/EO —0(1),

as comparedwith (2.38),when the large quantumfluctuationsof the ground stateandthe first radial
excitation are takeninto account.We shall return to the discussionof the zero-point fluctuationsin
subsection6.4.

The otherproblemwith Dirac’s electronmodel is that it doesnot carry the half-integerspin of the
physicalelectron.This defectmaybeeliminatedin the future by introducinga spinningsurfacein the
extendedmodel.

Nevertheless,evenwith correcthalf-integerspin, thereis no selectionrule betweenthe muon and
the electronin the model becausethe muon maydecayinto the ground stateelectronplus photons,
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E(~)

,,~.

Fig. 2.4. The staticenergyis shownasa functionof thedeformationparameter� (eccentricity).

electromagnetically.Only a miraclemight suppressthe decayrateof

-+ e+ photons

below the experimentalupperbound.
Perhapsthemostseriousdifficulty with Dirac’sextendedelectronis its instability in classical,static

equilibrium. To demonstratethis, let us considersmall deformationsof the elliptical type aroundthe
static equilibrium.

For aprolateellipsoid, wetakethe minor semi-axisto bethe staticradiusa from (2.12a).The total
energyof the ellipsoid is then

E = a-S+ Ecb, (2.39)
where

S= 23T(a2+ sin �), � = Vi — a2/b2,

is the surfacearea,and� is the eccentricity.The electrostaticenergyEcb maybe calculatedfrom the
capacitanceC of our conductingprolateellipsoid,

— Vb2—a2C — Arch(b/a)~

There are similar formulae for the oblate case,too. There the major semi-axis is takenas the
classicalradiusa.

The total energyfrom (2.39)is shownin fig. 2.4 as the functionof the only parameter�. One notes
that the staticsphereis in a neutralpositionenergetically,with an inflection point at� = 0. For prolate
shapesthe static energydecreasesand the extendedelectronis unstable.Whathappensis that the
increaseof the surface energy for prolate deformationscannot compensatethe decreaseof the
Coulombenergy.

It remainsan interestingandopenquestionin which mannerthe electrongetsstabilizeddueto the
quantumfluctuationsof the surface.

3. Baggedquantumchromodynamics

3.1. Quantum chromodynamics

Many theoristsbelievetodayin q.c.d. as the microscopicdynamicsof quarksandgluonsproviding
akey understandingof hadronstructure.This field theoreticalmodel is very elegantand simple in its
formulation.
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We shalldesignatethe quark fields by qa wherethe first index i = 1, 2, 3 refers to the color gauge
groupof SU(3). Quarksbelongto the triplet representationof color SU(3). The secondindex a refers
to the flavor groupof SU(4) as the approximatehadronicsymmetry:

quark species up down strange charmed

red q,
1 q2 q3 q4

yellow q21 q22 q23 q24
blue q,, q,2 q33

If there are more flavors in Nature, the flavor group can be enlargedand the forthcoming
discussionremainsunaffected.

The vectorgluon fields aredesignatedby A,,.wherethe first index i refers to color. Gluonsbelong
to an octet representationof the color gaugegroup SU(3), and the eight colors are labelled with
i = 1,2,. . . 8. Thesevectorparticlesareflavor singletsunderthe hadronicsymmetrygroupSU(4).

The action W is invariantunder the color gaugegroupSU(3)andwe shall write for it

W = fd
4x{—~F,,.,,Fr~+ ~i~y”~,.q— g~A

1y~qA1,.}, (3.1)

wherethe flavor andcolor indicesof the quark fields q•,, are not written out explicitly. Termswithout
someindices areunderstoodto be summedover thoseomittedindiceshere,andlater on.

The non-Abelianfield-strengthtensorin eq. (3.1) is given by

~ = — 8~A~’+ gfI3kAJAk.

The structureconstantsof the color gauge group SU(3) are denotedas fijk and g is the small,
fundamentalquark—gluoncouplingconstantin the theory.The eight Gell-MannmatricesA, act in color
space.

The action W in eq. (3.1) is invariant under the hadronic symmetry group SU(4), though a
symmetrybreakingquarkmassterm canalwaysbe trivially addedto W.

It is not difficult to obtain the following set of Euler—Lagrangefield equationsfrom the action
principle SW= 0

D~F,,.,,= g~A1y,,q, (3.2)

- dsn s —

—lo,.)’ q,~,~-guA,~-’,,.,~ky qk~ —

In eq. (3.2) we haveintroducedthe gaugecovariantderivative

D
‘~—~“~ ‘

ii — (iii’) — gJ,Ik’-’k-

Thereare eight conservedcolor currentsJr(x) in the theory,andthey aregiven by
I.’ —~ I.’

gJ, (x) = g{q~A1yq +f,,kFj Ak,,}. (3.4)
The two terms in eq. (3.4) are the contributions to the color currentsfrom quarks and gluons,
respectively.

The eight color generatorsof the model aredeterminedfrom the color currentsas

= f d
3xJ?(x), i = 1,2 8. (3.5)
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They are constantsof motion and measurethe color chargesof the hadronic systemwith colored
quarkandgluon constituents.

There is aconjecturein certaintheoreticalcirclesthat thecolor non-singletdegreesof freedomcan
not beexcitedin the theory,and only color singlethadronsarephysicallyobservable.Thismeansthat
the color generatorsQ, of eq. (3.5) would all vanishwhenapplieduponthe physicallyobservablestate
vectorsof the theory.

We shallavoid hereanydiscussionaboutthe validity of this conjecture.Instead,weshall introduce
aphenomenologicalstructurefor the vacuumwith “collective variables” to implement quark and
gluon confinementas the initial dynamicalassumptionof the quarkbag model. The existenceof an
approximatebag-like structure may, or may not follow from quantum chromodynamicswithout
additionalassumptions.

3.2. Theactionprinciple in the quark bag model

Following the considerationsof the Introduction,the bag is pictured here as a bubblein hadron
phaseembeddedin the field non-supportingphysical vacuum in a Lorentz invariant manner.The
bubble is filled with colored quark fields and the non-Abelian gauge fields of gluons in mutual
interaction.The pressureof quarksand gluons exertedon the surfaceof the bubbleis balancedby
surfacetensionandvacuumpressure.

The relativistic action W for the bag is a generalizationof eq. (1.4) for the caseof quantum
chromodynamics.As we havediscussedin section2 the action is properly definedin a curvilinear
coordinatesystem,wherethe surfaceof the bagis fixed.

We shall introduceagainthegeneralcurvilinearcoordinatesx~.The surfaceof the bagis described
by coordinatelineswith x’ = 1. The interior of the bagis mappedinto the region x’ E (0, 1).

For reference,we also introduce a second rectilinear and orthogonal coordinate system yA,
similarly to the discussionof section2. The functionsy”(x) describethe x coordinatesystemin terms
of the y coordinatesystem,with the metric

g,.,, = ~

in the x system.The four covariantvectors

TA = ôy”/8x~ for A = 0, 1, 2, 3,
are known as a tetrad,or vierbein.They transform as Lorentz vectorsin their A indices under the
Lorentz transformationsof the y coordinatesystem.

The generalcoordinatesof the extendedhadronare designatedin the quarkbagmodel by A,,.(x)
for the non-Abeliangluon fields, q~,,(x)for thequark fields, and yA(x) for the “collective variables”of
the bag. The generalcoordinatesare definedfor thosevalues of x~where x1 E (0, 1); thereare no
generalcoordinatesoutsidethe bag.

The action W is written in curvilinearcoordinatesas

W = f ~ — oc~y’~r~q)
x’E(O, 5)

_gc~AjyAr~Aj,.}_a-f Mdx°dx2dx3—B f d4x, (3.6)
x’=i x’E(O. 1)

whereJ = V— detg,,,,, is the Jacobian,M = \/detgab, (a,b = 0, 2, 3).
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The first term on the right-handsideof eq. (3.6) is recognizedas the action of q.c.d.as restrictedto
the interior points of the bag. Hencethe terminology:baggedquantumchromodynamics.The second
andthird termsdescribesurfacetensionand vacuumpressure,respectively,as it was discussedin
subsections1.3 and 2.1; the action for the surfaceis a- timesthe three-dimensionalareaof the tube
sweptout by the surfaceof the bag in the four-dimensionalMinkowski space,whereasthe lastterm is
proportionalto the four-dimensionalvolume of the tubewith the proportionalityfactorB.

Our variational processfor the bagis similar in its spirit to the derivationof the equationof motion
for Dirac’s electronin subsection2.1. From the terms in SWwhich are proportionalto 5A1,,,(x) and
Sqj~(x)inside the bagwe get the well-known non-Abelianfield equationsfor quarks and gluons in
curvilinearcoordinates.They areidenticalwith eqs.(3.2) and(3.3) for the interior pointsof thebagin
the y coordinatesystem.

Variation of As,. on the surfaceleadsto the linear boundaryconditions

F~”n,.=0, i=1,2,...,8 (3.7)

for the gluonfields at x’ = 1. In eq. (3.7) n,. is the unit normal four-vectorto the surfacex’ = 1:

= 1,0,0).

To establishaconventionwe take n to be the exteriornormal to the surface.
Wheneq. (3.7) is written in the y coordinatesystem,onefinds

n-E,=0, (3.8)

n0E~+nxB,=0, (3.9)

so that the normal componentsof the gluon electric fields E, and the tangentialcomponentsof the
gluon magneticfields B1 all vanishon the boundaryof the bagin the instantaneousrest frameof the
surfaceelement.

The color electric fields E, and the color magnetic fields B1 are defined as the time—spaceand
space—spacecomponentsof the field strengthtensorF,,.,,, respectively.

It follows from eq. (3.8) that thereis no color electric flux through the surfaceof the bag. As a
consequenceof Gauss’stheorem,the total color chargesQ, for i = 1, 2,. . - , 8 mustvanish in the bag
modelfor anextendedhadronwith closedboundary:

Q~=f d
3yJ~(y)=—f dfn,.F~”=0.

bag surf

Similarly, thereis no gluon field energyor momentumflow acrossthe surfaceof the bag. The
boundary conditions of eq. (3.7) render the walls of extendedhadrons impermeableagainst the
coloredvectorgluon fields.

Nothing hasbeensaid so far aboutthe boundaryconditionsfor the coloredquarkfields. We have
seenthat thecoloredgluonfields areconfinedto small closeddomainsof space(bags),andonly color
singlet statesare allowed. Since the colored quarksare always coupledto coloredgluons, we may
expectthat theybecomeconfinedinside colorless,(white) bags.

As we shall see in subsection4.1, the boundarycondition

qia(x)=0, x’= 1, i= 1,2,3, a = 1,2,3,4, (3.10)
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for the coloredquark fields is motivatedon the quantummechanicallevel. Thephysicalcontentof eq.
(3.10) maybe explainedas follows.

The point-like colored quark always drags along a color electric field which is subject to the
boundaryconditionin eq. (3.7). This field generatesa repulsivepotentialbarrier betweenthe quark
and the surfaceof the bag, so that the quantummechanicalwave functionof the point-like quark
becomesrepelledfrom the immediatevicinity of the boundary.

This picture is consistentwith the mathematicalrequirementthat all the quark wave functions
vanishon the surfacein the presenceof gluon interaction.Equation(3.10) maybe generalizedto be
imposedon the interactingquantizedquark fields as anoperatorequation,andwe shallalsoacceptit
in the classicaltheory.

Equation(3.10) is different from the boundarycondition imposedon the quark fields by the MIT
group. The relation betweenthe different boundaryconditionsand the argumentswhich favor eq.
(3.10) will bediscussedin detail in subsection4.1.

Returningto the actionprinciple SW= 0 we are left with variationsof y”(x). Variation of y’~(x)
inside the bagis just an identitywhenthe field equations(3.2) and(3.3) areused.We getnothing, since
the variationof curvilinearcoordinatelines inside the bagis without physicalsignificance.

However, variation of y”(x) on the surfacewhen x’ = 1 is maintainedleadsto the equationof
motion for the boundaryof the extendedhadron:

—a-F’a,.(Jn~)+B, x’ = 1. (3.11)

The first term on the right-handside of eq. (3.11) is 2a- timesthe meancurvatureof the surfacein
Minkowski space.The secondterm B describesthe vacuumpressure.The boundaryconditionsof
eqs.(3.7) and(3.10) areapplied in the derivationof eq. (3.11).

The meancurvaturedependson the accelerationof the correspondingsurfacepoint, thereforeeq.
(3.11)is areal equationof motion for the surface.In the absenceof surfacetensioneq. (3.11) is only a
relation betweenthe coordinatesandvelocities.

We picture thenthe classicalbagtheoryas follows:

BUBBLE AND FIELD BOUNDARY
DYNAMICS CONDITIONS

field equations
of q.c.d. gaugefields
(seeeqs.(3.3) F~’n,.= 0
and (3.4)) q.c.d. locally

inside the bag quark fields

bubbledynamics q,~(x)= 0
= —oT’3,.(Jn~)+B

The energy-momentumtensordensityT”(y) of the quarkbagmodel is calculatedin the rectilinear
andorthogonalcoordinatesystemy. Essentially,the methodwhich was applied to Dirac’s extended
electronin subsection2.3 maybe copiedhere.

TAI((y) receivescontributionsfrom threeindependentpartsof the action W:

T~’(y) = T~(y) + T~”(y) + T~(y). (3.12)
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In eq. (3.12)the term TOAK is the sameas in ordinarychromodynamics.The energy-momentumdensity
T~Kof the surfaceagreeswith the formula in eq. (2.31). TABK is a new piece in TAK, sincetherewas
no volume energyin the electronmodel:

SWB = ~fd4yV—detYA’K’TBSYAK(Y). (3.13)

After the variationsareperformedin eq. (3.13), onefinds

T~”(y)= B f d4xS4(y — y(x))y’~(y).

The total four-momentumof the bubblewhich is not of chromodynamicalorigin is given by

— f~rOA~ ~ pOA~ \\A3

Fbaaj ~ ~ ~y~+ ~ ~ ~y))u y.

Onenotesthatthereis no three-momentumassociatedwith the secondterm T~’(y). Only the surface
carriesthree-momentumas independentdynamicalentity.

To get a feeling aboutthe confinementforce betweencoloredquarks, we shall study a simplified
model, first. The classical bag equationswill be solved for infinitely heavy colored point quarks
surroundedby baggedcolorgaugefields.

3.3. Static bag with point-like coloredquarks

Let us considera pair of point-like coloredparticlescoupledto the non-Abeliangluon fields inside
the bag. When the particlesare infinitely heavy, they becomenailed down to fixed points in space.
They are characterizedby fixed sourceswith color spin ~A~ and~A~2)

Since the color generatorsare not commuting,color as an independentdegreeof freedom bears
some resemblanceto spin in quantummechanics.The quarks in triplet representationare unam-
biguously characterizedby the color generatorsQ3 andQ~.

Quarks Antiquarks

red yellow blue green violet orange

Q
3 I —1 0 —I 1 0

Q8 1/3 1/3 —2/3 —1/3 —1/3 2/3

There is a limit when the complexitiesof the non-Abelianstructurecan be avoided.Solving the
problemin the lowest order of the small couplingconstantg, we get eight setsof Abelianequations
with the chargedensityj~on the right-handside:

.0 I (5) 3 1 (2) 3

= g~A S (r — r,) + g~A1S (r — r2), i = 1,2 8.
In this limit the Lagrangian(or energy)is quadraticin the gaugefields and the combination

g
2 (‘A~~~)2 n = 1,2, (3.14)
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occursin the self-interaction,while the interactionterm is proportionalto
8

2 V !s (1)!~(2)g ~ 2Ai 2Ai
i=1

The term in eq. (3.14) is proportional to a Casimir operatorwhich has the value ~g2in triplet
representation.In a singletstate

!~(‘) !I(2)_A

2A1 ~2Ai U,

which gives —~g
2for the secondexpression.So the problemis equivalentto thatof an Abelian field

coupledto a quarkandantiquarkwith charges±V~g= ±g’ respectively.
Consider, therefore, the Abelian problem. We have to solve a rather peculiar exercisefrom

electrostatics:given two fixed (color) chargesat positions r, and r
2 with oppositesigns for their

charges,find the shapeof a domain(gluon bag) insidewhich the Maxwell equationsarevalid for the
gluon field,

curl E = curl B = 0,

divB=0, (3.15)
div E = g’[8

3(r — r,) — 53(r — r
2)].

The color magneticmomentsareignoredhere,andB = 0 is assumedin the solutionof eq. (3.15).
On the static surfaceof the bagwe havethe following linear boundarycondition

n~E=0, (3.16)

wheren is the normalvector to the staticsurface.
The equationof motion for thebag’sshapebecomesnow astatic relationbetweenthe electric field

pressureandthe sum of the surfacetensionandvacuumpressure.Fromeq. (3.11)we find

= a-((I/R,)+ (l/R2))+ B, (3.17)

wherehR1 and hR2 are the principal curvaturesin two orthogonaldirectionsat a given point of the
staticsurface.

If the surfaceis characterizedby the function p(1~)in polar coordinates,the sum of the principal
curvaturesis given by

1 1 1 k p.~ p~—pp.~
T5 + — 2 2 ,,zi~.——ctgu+ 2 2
i~ R2 (p + p~~)L P P + P.~’

for axial-symmetricsurface.

Numerical solution

Introducingthe scalarpotential t~(r)for the color electric field E by the definition

E = —grad ~i,

we write the staticLagrangianof the bagas

L = ~ f d
3r(grad~)2 — f d3rçbj

0 — a-F— B V. (3.18)
bag bag
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The staticchargedistributionin eq. (3.18) is

j0(r) = g’{S
3(r — r

1) — S
3(r— r

2)},

F is the surfaceareaandV is the volume of the bag.
The field equationsand the boundarycondition togetherwith the bag’s dynamicalequationfor

static equilibrium can be derivedfrom the Lagrangianof eq. (3.18) by the variation of the potential
and the surfaceof the bag.

A numericalsolutionis availablefor the problemusingthe variationalmethodSL = 0 with respect
to çb andp(~,p). Sincethe bag hascylindrical symmetryaroundthe axis definedby the q~pair, we
shallwrite the expansion

p(~)= ~ 131P2(cos~) (3.19)

for the surfacewith unknowncoefficients13,, to be determinedfrom the variationalprinciple.

The color Coulombpotentialsof the point chargesare separatedfrom 4(r):

4(r) = g’ — g’ + ~ ci(_L-_)
2’P

21(cos~), (3.20)
~rIr r1J ~Ir r21 I Pmax

wherewe haveto determinethe expansioncoefficientsc,.
The equationA4i(r) = ~Joinside the bagis satisfiedby the Ansatzof eq. (3.20) automatically.The

variational solutionfor the expansioncoefficients13, andc, determinesthe shapeof the bagin termsof
p(~),togetherwith the field potential~(r, ~t) inside.

The boundarycondition

34/dn=0

on the surfaceof the bag,andthe equationof the static equilibrium

~(grad~)2 = a-((l/R1)+ (1/R2))+ B

are satisfiedas a consequenceof the variational equations.
The numerical method where a finite number of expansionparametersis used gives rapid

convergenceand satisfactoryresults.To illustratethe rapid convergenceof the methodwe shall give
herea numericalsolution with five parametersin the expansionof p(1~)and çb(r, t~)respectively.

For a first orientation,the strengthof the quark—gluoncouplingwas set at the value

g’
2I4~= 0.2. (3.21)

[GeV~]
-R

2~ce

~oIor ~ r [Gev~j

Fig. 3.1. The shapeof one quadrantof thebag in longitudinalsectionfor different q—t~separationsis shown.The arrow indicatestheradiusof an
ideal cylindrical vortex tube.
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The strengthof surfaceenergyis

a- = 216MeV/fermi2 (3.22)

in the numericalexample,andB = 0 is chosenfor simplicity.
The shapeof the bag is shownin fig. 3.1 for different valuesof the distancebetweenthe point-like

quarkandantiquark.We estimatetheerror in the calculationas dueto the cut-off in the expansionsof
eqs.(3.19) and (3.20)at five parametersto be within ten percent.

The computercalculation confirms our intuitive picture about the static confinementforce for
colored quarks separatedat large distances:a color electric vortex develops betweenthe color
chargesfor largeseparation.

The color electric vortex
We shall imagine a fictive geometricalconfigurationwhere the color chargesof the quark and

antiquarkare smeareduniformly on two paralleldisks at a distancer. The radiusof the two disksis
chosento be

R = (g’212ir2a-)”3. (3.23)

There is anexactstatic solutionof the bagequationsto this geometry.
The color electric field E forms a homogeneousvortex of radius R with a cylindrical surface

betweenthe color charges.SinceE is tangentialat the surface,the boundaryconditionof eq. (3.16) is
satisfiedon the cylindrical surfaceof the static vortex-like bag.

It follows from eq. (3.17)that

~E2= a-/R (3.24)

is valid on the cylindrical surface.From Gauss’slaw,

= IEIR2ir,
the radiusR of the vortex canbe expressedwith the help of eq. (3.24) and it agreeswith the value
which we havechosenin eq. (3.23).

The staticenergyU~storedin the color electric field,

U~= A~r,

is proportionalto the length of the vortex,with the proportionalityfactor

= ~(4ira-2g’2)”3. (3.25)

The surfaceenergy

U
5 = A5r

is alsoproportionalto r, with

A. = (4ira-
2g’2)”3. (3.26)

A similar vortex developsbetweentwo point-like color chargesat largeseparation.Only at the
endsof the cigar-like bagare the field E and the shapeof the bagmodified whencomparedwith the
exactcylindrical vortex.
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The potential energy V(r) of the q~-pairfor the numericalsolution with five parameters13,,
= 0, 1,. . . , 4 and c1, i = 0, 1,. . . ,4 is shown in fig. 3.2. A divergent Coulomb self-energyfor the

point-like color chargeswhich is independentof the distancer is subtractedfrom V(r).
The potentialenergyV(r) is well approximatedby

V(r)—-’-~—~-
4ir r

at small distanceswherea dominantCoulomb-like interactionenergyis expectedbetweenthe color
charges.At largedistancesV(r) is proportionalto r,

V(r)=Ar,

and the proportionalityfactorA is guessedfrom the exact vortex solutionto be
3 2 ,2I/3

A—~(4ira-g )
With the parametersof eqs. (3.21) and (3.22) the numerical value of A is one GeV/fermi,

well-tailored for charmonium calculations. The color electric vortex solution with linearly rising
potentialenergysetsin at rathersmalldistancesaround r = 0.5 fermi.

The surfaceenergy is also shownin fig. 3.2. It is linear as expectedfor a vortex betweencolor
charges,and the relation

A. = 2A~,

which follows from eqs.(3.25) and(3.26) is well approximatedby the numericalsolution.The slopeof
the surfaceenergyis twice of the slopefor the gluon field energyin fig. 3.2.

The radiusof the ideal vortex canbe calculatedfrom eq. (3.23)with the previouslyfixed valuesof
g’

214ir anda-

2R 1 fermi.

This valueof R is shownin fig. 3.1 indicating the rapid convergenceof the bag’swidth to that of the
exactcolor vortex with increasingvaluesof r.

v(r)
2 [GeV]

1 ~/r[GeV,

]

(~~ou1om~region 8

Fig. 3.2. The staticenergyof the q~-system.
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Fig. 3.3. Quark—diquarkconfiguration. Fig. 3.4. Three quarksat large separation.

The static configurationof threecoloredpoint quarksis more complicated.Though no computer
calculationsareavailable,we may conjecturethe qualitativepictureusing the approximatenotion of
the previouslydiscussedquarkvalenciesas follows:

When the red, yellow, and blue quarks are lined up as a chain moleculetype configuration,the
color electric flux linesof E3 and E8 are shownin fig. 3.3. Two quarksat the end of the chainalways
attracteachother(diquark).

For example,the attractiveforcebetweena redquarkanda yellow quarkdue to their color charge
Q, is strongerthenthe repulsiveforce generatedby the color charge Q8. This observationmotivates
the quark—diquarkmodel of baryonsin certaintheoreticalcircles.

If one quark is pulled out from the chain,we get threevorticeswith a junction in the middle, fig.
3.4. This is probably the energeticallymost favorablearrangementfor threequarkswhich are not
lined up alonga chain.The conjecturedconfigurationmotivatessomestring modelsfor baryonswith
threequarksatthe ends.

In the numericalexamplewehavesetthe strengthof vacuumpressureB to be zero.This condition
canbe easilyremovedin the calculationwhich worksfor anycombinationof surfacetension a- and
vacuumpressureB.

Theremay occur,however,a ratherpeculiarsingularity on the surfaceof the bagfor a- = 0 which
requiressomecaution. The color electric field E is tangentialat eachpoint of the surface.For B = 0
this is realized in such a way that the surfacebecomesflat in two oppositepoints on the axis
connectingthe qt~-pair.Since the meancurvatureof the surfaceis zero in thesepoints E vanishes
there.

In the other extremecasewhen a- = 0, the equationof staticequilibrium is

= B,

andthe colorelectric field strengthmustbe constanton the surface.The normalcomponentof E is, of
course,zero in eachpoint of the surface.It turns out thatthe shapeof the bagdevelopsa singularity
on the surfacein two oppositepoints wherethe surfacewas flat previouslyin the presenceof surface
tension.The singular shapeis shownin fig. 3.5 for a crosssectionof the cylindrically symmetricbag.
The singularityof the surfaceis smoothedout in the presenceof surfacetension.

(c~
Fig. 3.5. The staticsurfaceof thebag with pure volume tensionnearto a pointcolor charge.
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4. Quarkboundarycondition andsurfacedynamics

4.1. Quark boundarycondition

In the previoussectionwe studiedthe extremeexamplewhere the quarks were fixed in space
surroundedby a baggedgluon field. It gaveus a feeling about the natureof the confinementforce
betweenpoint-like static quarkswhenthey were separatedat largedistances.

Here we shall study the confinementmechanismfor quarkswhen they can moveinside the bag.
Our purposeis abetterunderstandingof the quarkboundaryconditionon the surfaceof ahadronin
the bagmodel.

First, let us considera free quark field q(x) confined to the interior of the bag without being
coupledto gaugefields. The suffices i = 1, 2, 3 standfor color. The local flux of color in the interior is

J~(x)=

If the quantumnumbersassociatedwith the currentsare not to be lost throughthe surface,thenit is
necessarythat

fl~~J~k= ‘1~fl yq~= 0

on the surface.

Now, (my)2 = 1, so that iyn haseigenvalues±1. Following the M.I.T. group,let usassumethat
—inyqk~ =qka, k 1,2,3, a = 1,2,3,4 (4.1)

is satisfiedon the surfaceas the quarkboundaryconditionwhenwe approachfrom interiorpoints. In
eq. (4.1) the flavor index a of SU(4) is alsowritten out explicitly. Thenit follows from eq. (4.1) that

—

—

and

q~q~k= 0

arevalid on the boundaryof the bag.

The stresstensorfor the quark fields which describesmomentumandenergyflow inside the bagis

‘rs’~ _V !~. ~
~ quark~j )2’qiay -~——i7qia—2l~ ,,~ q

1~
l.a t. uX uX

and

= 0.

The momentumandenergyflow through the surfaceis given by evaluatingn,.T~’~on the surface:

~ ~ (4.2)

The boundaryconditionin eq. (4.1) is usedin the derivationof eq. (4.2). We havefoundbeforethat
= 0 on the surface,henceits derivativepointsalongthe normal,

OX” ~ q1~q~= ~
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Therefore,we find that

n,.T~”=

and ~q is interpretedas a “pressure”on the surface,since in the instantaneousrest frame of the
surfaceelementthe momentumflow is normal to the surfaceandis given by Pq. We may call ~q the
quarkpressure.It is balancedby surfacetensiona- and vacuumpressureB.

In the M.I.T. model,wherea- = 0, the total energy-momentumtensorfor hadronsis

Tv” — JT~”+ Bg~”, insidethebaghadron — 1 0 outside,

in the absenceof gluon fields. The balanceof quarkpressureand vacuumpressureon the surface
leadsto the non-linearboundarycondition:

~ (4.3)

Since the surfacevariablesdo not appearwith secondtime derivatives in eq. (4.3), the surface
variablesare not new dynamicaldegreesof freedomin the M.I.T. version. The surfacevariablesare
simply given thereas functionsof the interior fields q,~(x).This featureremainsvalid in the presence
of quark—gluoncoupling.

The boundarycondition in eq. (4.1) may be interpretedphysicallyas follows. Outsidethe bagthe
physicalvacuumgeneratesalarge (eventuallyinfinite) effectivemassfor quarks,so that they cannot
propagatetherewith finite energy.The outside vacuumacts as a scalarconfinementpotentialwith
infinite walls maintainingLorentz invariancein the formulation of the model. It can be shownthat
suchascalarpotentialrequiresthe boundaryconditionof eq. (4.1).

We shall arguenow that the quark boundarycondition in the presenceof quark—gluoncoupling,
at leastfor slowly moving quarksin adiabaticapproximation,becomes

q,~(x)=0. (4.4)
Let us considera fixed infinite plane at z = 0 with its normal vector n along the z-axis. Let the

planebe a reflecting dielectric mirror againstan Abeliangaugefield A,.(x) with the linear boundary
conditionsof eq. (1.5). Onenotesthat this is the semi-infinitedielectric slabof section1.2 with �, =

for z>0, and �2 = 0 for z< 0.
Let the gaugefield A,. be coupled to a quark spinor field q(x) which is not restrictedby the

boundaryconditionof eq. (4.1) on the surface.The planeatz = 0 is transparentagainstfreequarksin
the absenceof quark—gluoncoupling. Nevertheless,as we shall see,quarkscannotget through the
dielectricmirror becauseof the gaugefield A,. draggedalongby the quarkcolor charge.The simple
examplemotivatesthe boundarycondition in eq. (4.4).

The motion of achargedpoint quarkwill be studiedin the region z > 0. There is an instantaneous
Coulombinteractionbetweenthe quarkandthe dielectric.The instantaneouscolor electric field which
is tangentialon the plane at z = 0 is calculatedby introducingthe image chargeof the quark at
r°°= (x, y, —z)as shownin fig. 4.1. The positionof the quark is denotedby r = (x, y, z).

The potential4(r’) of the color electric field is givenby
4i(r’) = g 1 , + ....L im ,, (4.5)

4irlr—rI 4~Ir —ri
where r’ is an arbitrarypoint in the region z> 0.
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---/y’.~

Fig. 4.1. The static color-electricfield of a point-like color chargein a semi-infinitedielectric slab.

The first term in eq. (4.5) gives the divergentCoulombself-energyof the point-like quark when
evaluatedat thepoint r’ = r. It is independentof r andcanbe absorbedin the massof thequark.

The secondterm,however,givesa z-dependentfinite additional massterm in theone-particleDirac
equation.This massterm is identicalwith the potentialenergybetweenthe dielectric andthe quark.
The force betweenthe dielectricmirror and the chargedparticle is repulsivefor both the point quark
andits antiparticle.

The Diracequationof the point quarkwith the scalarself-massterm a/4z is written as

{...~[° oz] ~-+ (m~ ~]}q(z) = Eq(z), (4.6)

whereq(z) is the spinorwave function.The x and y dependenceof the Dirac spinorcanbe separated
in cylindrical coordinates.Here we consideronly thosesolutionswith vanishingazimuthalquantum
numberwithout x andy dependence.The conclusionremainsthe samefor all partial waves.

Sincethe third componentof the spin operator~ commuteswith the Dirac Hamilton operatorHD,
the Ansatz

q(z)= [J~], ix = a-zco (4.7)

is required to be common eigenfunctionof 1. and HD. In eq. (4.7) ~ and x are two-component

spinors,and
‘p =

describesa quarkstatewith the third componentof the spin alongthe positive z-axis.

Fromthe Diracequation(4.6) we find the first orderdifferentialequations,

Ef=—g’+(m+(a/4z))f (48)

Eg = f’ — (m + (a/4z))g.

For anyvalue of the energyE = Vp2+ m2,thereis a solutionto (4.8) which is regularat z = 0, with

1(z) — const-~a/4 g(z)— const~z’~4

for small values of z. There is also a singularsolutionwith

1(z)— const~z~’4, g(z)— const-z”4

whenz goes to zero.
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The exactsolutionof eq. (4.8) arecalculatedas follows. After the substitutions

g = i ~ e_u1~z[F,(2ipz)— F2(2ipz)], (4.9)

f = ~J7E~IPZ[p (2i ) + F2(2ipz)] (4.10)

we find the secondorderequationsfor F1 and F2:

~F~)+(1—~)F— (l+~.~+~~)F,=0,

~F’2’(~)+ (1 — ~)F~— (-~+~-)F2 = 0,

where~ = 2ipz.

Now the function G2 with

G2(~)= ~_aI
4F(~)

satisfiesthe confluenthypergeometricequationwhich hasa regularsolution

G
2(2ipz)=M(~+,~-+ 1,2ipz) (4.11)

in termsof the Kummer functionM. There is alsoawell-known irregularsolutionwith M -+ U. The
mostgeneralsolutionof the confluenthypergeometricequationis an arbitrary linear combinationof
the M and U functions.

The functionF, can be calculatedfrom F2 usingthe relation

= —4-i ~F~) —~ F2(~).

SinceM(a, b, z) behavesfor smallz as M 1 + 0(z) the choice(4.11) for the function G2 defines
the regularsolutionof the Dirac equationfor f andg in eqs.(4.8) and (4.9). The smallz behaviorof
U(a, b, z) is U z~’

2(1+ 0(z)) so this choice correspondsto the irregular solution of the
Dirac equationfor f andg.

Let usconsiderfirst the regularsolutionof the Dirac equation.From the largez behaviorof M

M(a, b, ~) !:~)ea_b e~,

we find asymptotically

freg(Z) const.tJ7~~sin(pz— ~- ln 2pz+

TE / am
greg(z)-~const.~‘—— 1 cos~,,pz—-~--—ln2pz+S)~

wherethe phaseS is definedas

= ,~—~+ argr(~+1 + i~!!~.), e2~= ~ (4.1’
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The regular solutions may be interpretedas scatteringstates with total reflection on the scalar
potentialbarriera/4z in the following sense.Onedefinesa cut-off potential

V(z)=a/4z, �<z<en

a14�, 0<z<�
=0, —en<z<0 (4.13)

with the cut-off atz = �. The scatteringstatesof the Dirac equationfor incomingwavesfrom theright
are calculatedby matching a linear combination of the M and U functions to the solution for
0< z<�. There is a similar procedureat z = 0. In the limit � -.0 the reflection coefficient of the
potentialbarrier (4.13) goes to one, and the quarksor antiquarkscannotpenetratethroughthe plane
z = 0 into the left half-space.

Quite apartfrom the cut-off procedure,the regular solutionsfreg and greg form acompletesystem
for z> 0 which is selectedfrom the most generalsolutions of the differential equation(4.6) by
imposingthe boundarycondition

q(z)=0 (4.14)

at z = 0.
We mayconjecturethat (4.14) will be maintainedfor the quark field operatorsin the quantumfield

theory of the model.
Apparently, there seemsto be a contradictionbetweenthe M.I.T. boundarycondition (4.1) and

q = 0. However,onenotesthatfor anyfixed, andpositive z

‘.= V1~~sin(p2+?1), g= ~J~_lcos(pz+~), (4.15)

in the a-.0 limit. Now the standingwavesof (4.15) areexactly the sameas if the M.I.T. boundary
condition (4.1) were imposedon the solutionsof the free Dirac equationin the right half-space.

For small valuesof the quark—gluoncouplinga, freg and~ approximatelyagreewith the M.I.T.
solutionsof the free Dirac equationinside the bag,thoughthereis a differencein a thin skin close to
the boundaryof the bag. Herefreg andg,~vanish in thez -+0 limit.

The differenceis understandablein potential language.In the absenceof quark—gluoncoupling the
free quarks are confined by an infinite scalarpotentialwell in the M.I.T. interpretation.There is a
direct quark pressure~q exertedon the boundaryof the bag, as it was discussedbefore in this
subsection.However, in the presenceof quark—gluon coupling an effective quark self-massis
generateddueto gluon confinementas shownin fig. 4.2. Thispotentialbarrier motivatesthe boundary
condition(4.14). Thereis no direct quarkpressureon the surfaceof the bagthen,it is the gaugefield

~ark

z=o
~y diagramof thequark in the semi-infinite dielectricslab. The gluon propagatormay have reflectionson the surfaceat
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pressurewhich is balancedby surfacetensionandvacuumpressurein the quark bag model with
quark—gluoncoupling.

4.2. Surfacetensionversusvacuumpressure

Dirac has introduced in 1962 an extendedelectron model in which the electron’s surface is
describedas the continuumlimit of atwo-dimensionalsequenceof geometricalpointsconnectedin a
Lorentzinvariant manner.

The relativistically invariant action W5 of eq. (2.2) for a closed surface can be viewed as a
generalizationof the action

Wpoint~5mfdtV1_v2

for a point particle. Wpojnt is associatedwith the world line of a geometricalpoint, where v is the
velocity,andm is the restmassof the point.

The relativistic string is a sequenceof geometricalpoints connectedin a linear chain in the
continuumlimit. The associatedgeometricalactionis

Wstring~JdtfdSV1_V~, (4.16)

whereds is the length of the ~ineelementandv1 is the velocity of the line elementin the transverse
direction.The constantr hasadimensionof energy/length,or length

2.
Nambu hasnoticed in 1969 that the spectrumof the dual resonancemodel may be interpretedas

the stationaryquantumstatesof a relativistic string definedby (4.16). r’ is proportionalthento a’(O)
which is the universalslope of the linear Reggetrajectoriesin the dual resonancemodel.

It is clearfrom (4.16)thatonly internalmotionsof the string transverseto its extensionin spaceare
dynamical.That is, the action Wstrjng dependsonly on the transversevelocity associatedwith
transversemotions.The longitudinalexpansionor shrinkageof the line elementsis alsophysicalbut it
is somehowassociatedwith “potential energy”andnot kinetic energy.

The relativistic action for aclosedsurface(or membrane)associatedwith ageometricalsurfaceis

Wsurf = — a-f dt f d2SVh— v~,

whered2S is the area of the surfaceelementand v~is the velocity of the surfaceelementin the
transversedirection.

Again, only internal motionsof the surfaceelementstransverseto their extensionin spaceare
dynamicalin the sensethatthe action Wsurf dependsonly on the transversevelocities associatedwith
transversemotions.

Now, the action

Wvacr~Bfdtfd~r (4.17)

for vacuumpressurecontainsno transversevelocity. The factor Vh — vj was forced upon us by
Lorentz invariancein the descriptionof the string or the membrane.However, dt d3r itself is an
invariant four-dimensionalvolume elementunder the Lorentz group, and no factor Vi — ~ is
allowed.
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Sincethe action(4.17) doesnot dependon velocities,it cannotdescribedynamicalmotions. Wvac
actsas somegeneralizedpotentialenergywhenotherdynamicaldegreesof freedomarepresentin the
system.

Let us consider, for example, a bubble with surface tension on the boundaryunder vacuum
pressurefrom outside.The actionis

Wbag = —a-fdtfd2SVl — v~— Bfdtfci3r~ (4.18)

which describesan “empty bag”. The motion of the surfacedescribesthe dynamicalevolutionof the
bag,andthe vacuumpressureacts as a potentialin the equationsof motion.

We note that the limit a-—*0 in the Hamiltonian associatedwith the action of eq. (4.18) still
describesa dynamicalbag whosesurfacebecomesmassless.However,the limit a-—*0 in the action
itself doesnot describea dynamicalsystem.

In contrast,the limit B -.0 in the Hamiltonian formulation is the sameas in the Lagrangian
formulation,sinceonly apotential term is madevanishingfor the dynamicalbubble.

Theselimits are illustratedon asimpleexamplein one space— onetime dimensionas shownin fig.
4.3. In the simplified one-dimensionalworld we shall write the actionfor the emptybagas

w = —a-fdtVi — h_a-f dt\/l — ±~—B fdt f dz. (4.19)

The Hamiltonianwhich is derivedfrom the action(4.19) is

H = Va-2+p~+Va-2+p~+Bjz
2—z,I. (4.20)

In our illustration the surfaceunder tensioncorrespondsto the sum of two point particleswith
mass a-, and the vacuum pressurein the Hamiltonian (4.20) acts as a potential. This potential
correspondsto a relativistically covariant,long rangeinteractionbetweenthe two surfacepoints. As
a-—*0 we still haveadynamicalsystemin Hamiltonianform wherethe two end-pointsare associated
with masslessparticles:

H = Ip~I+ P21+ B1z2— zil.

Thereis no dynamics,however,if a-—+0 is takenin (4.19), that is in the Lagrangianformulation.
The limit B—*0 can be takenboth in the action (4.19) and the Hamiltonian(4.20), and we are left

with the sum of two point particlesof massa- in this limit.
In threedimensionwe would get a relativistic bubbleof the Dirac variety in the samelimit, since

the surfacepointsareconnectedthere,in contrastwith the disjoint endpointsof the one-dimensional
example.

Vacuum pressureas describedby (4.17) may serve as the potential energy term of quark bag
dynamicswithout introducingsurfacetension.The dynamicalquarkand gluon fields of the interior
makethe bag a constraineddynamical systemwhich requiresa particular treatmentin the Hamil-
tonian formulation with the stumbling-block of non-linear second class constraints in Dirac’s

zI 0 Z2 Z
• UI.Sl~~IJIL1~IljIflI;lll55S

6 B 6

Fig. 4.3. One-dimensionalmodel where volume energyactsbetweenthepointsof masso.
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terminology.This model constructionwaschosenby the M.I.T. group in the original formulationof
the quarkbagmodel.

For illustrationof the highly constrainedM.I.T. Hamiltonian,let us considerthe one-dimensional
modelwherea neutralscalarfield 4u(z, t) is confinedbetweena fixed wall at z = 0 and a moving point
z = ~(t) which is the substitutefor the surfaceof the bagin onedimension(fig. 4.4). The inside of the
bagcorrespondsto the region0< z< ~

The Lagrangianis definedas
f(t)

L = f ~ B}— a-Vi — ~2 (4.21)

with the boundarycondition

~ t) = u6(z= ~(t), t) = 0 (4.22)

on the confined field ~(z, t). ~ and4~standfor the derivativeswith respectto t and z.
Vacuumpressurein eq. (4.21)representsa linearpotential B~for the surfacepoint ~ The surface

point carrieskinetic energyas arelativistic particleof massa-.
The dynamical coordinatesof the model are 4(z, t) for 0< z< ~(t) and ~(t). In curvilinear

coordinatesx, r,

z=~(t)x, xE[0,1]

t =

the numberof dynamicaldegreesof freedombecomesfixed, for our convenience.The Lagrangianin
curvilinear coordinatesis given by

L = Jdx{~~- ~ +~ (x~- h)~}- B~- a-Vh -

In the Hamiltonianformulationthe canonicalmomentaaredefinedas

IT = SL/S4~~.,= — x~cb.r, (4.23)

p = SL/S~= _!f dxxir~b~+ a-~- . (4.24)
Vi—~2

The velocitiescanbe expressedfrom eqs.(4.23) and(4.24) in termsof the canonicalvariables~, p and

~(zt)

~z

Fig. 4.4. One-dimensionalscalarfield confinedbetweena rigid wall andamoving point of mass o~.
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ir. We find the following Hamiltonian:

2 1/2

H=~fdx(~IT2+~)+Be+[a-2+ (P+~fdxXIT~~)]

The Poissonbrackets

{~,p}p=1,

and

{~(x,r), IT(x’, T)}p = S(x— x’)

are valid betweencanonicallyconjugatevariables.
In the Hamiltonian formulation it is understoodthat the dynamicalcoordinates4(x = 0, r) and

= 1, r) are eliminatedfrom the problem as required by eq. (4.22). They are kept zero in any
expansionof the field 4(x, r).

The quantumtheoryof the model is bestdescribedin field-diagonalrepresentation.The statesof
the systemare characterizedby functionals‘I’[~, 4(x)], andthe canonicalmomentamaybe represen-
ted as differential operatorsacting upon the wave functional ‘I’[~, ~(x)]. We recall from free field
theory that the representation

ha h S
p ~~IT~*T5~()

is appliedthere.The time independentSchrödingerequation

H”P=E’I’

becomesa functional integro-differentialequation.
Now we come to the importantpoint. If there is no kinetic energyassociatedwith the surface

point, and a- = 0 is set in the Lagrangian(4.21), confinementis providedby vacuumpressurealone,in
accordancewith the M.I.T. strategy.The defining equationfor p (eq. (4.24)) becomesa constraintthen,

~ +~fdxx~~=0, (4.25)

sinceit doesnot contain the velocity ~. Equation(4.25) is aconstraintamongthe canonicalvariables
in Dirac’s terminologyexpressingthe fact that not all of them are independent.The origin of the
constraintis that the Lagrangian(4.21) with a- = 0 doesnot containthe surfacevelocity, so that there
is no independentcanonicalmomentumbelongingto the endpoint ~.

As we shall seein the next section,furthersecondaryconstraintsaregeneratedin the systemfrom
consistencyrequirements.At the end,the secondclassconstraintsof Dirac maybe usedto eliminate
the redundantdynamicalvariables~ andp, andthe Poissonbracketsare replacedby Dirac bracketsin
the canonicalformulationof the quantumtheory.

Sincethe constraintsare non-linear,the procedureis very difficult to carry out in an explicit way.
There is no similar difficulty when surfacetensionis presentwith kinetic energyin the Lagrangian.
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5. Hamiltonian formulation and quantization

5.1. Quantizationwith constraints

The maindifficulty with the quantizationof the bagmodelwith quarkand gluonconstituentslies in
the fact that it is a constrainedcanonicalsystem.For somereasonssuch systemsoccur frequently
amongthe physically interestingtheories.If it were the only criterion of building up a successful
theory,the bagmodelwould be certainlyunbeatable:

a) constraintsarise dueto the physically unimportantcurvilinearsystemof coordinatesinside the
bag’ssurface;

b) the gluon field theory is constrainedin itself;
c) in the bagmodelwith purevolume pressurethe surfacevariablesarenot independentdegreesof

freedomwhich leadsto additional constraints.
As we haveseen,constraintstype a) can be avoidedby choosingan appropriateparametrization

for the curvilinearcoordinatesystem,while the gluon field brings in no new problemrelativeto the
conventionaltheory,as far as constraintsare concerned.The constraintstype c) representthe real
obstaclein quantizingthe MIT bag model.

Althougha generalformalism is availablefor the quantizationof singularsystemsof this type,the
applicationof the method is problematic.The first stepshave beenmadeby Shalloway,thenRebbi
andJohnsonproposeda methodwhich maybring the quantizationof the bagundervacuumpressure
attainablein 3 + I dimension.

As a simple illustrationof this method,we shall considerthe 1 + 1 dimensionalmodelof subsection
4.2. The quantizationprocedurein the presenceof surfacetensionwill be demonstratedon a model
with point-like quarkscoupledto gaugefields.

Both cases(vacuumpressureversussurfacetension)will be furtherexamplified by discussingthe
approximationof smalloscillations.

Before turning to the main body of this sectionlet us summarizebriefly Dirac’s theoryof singular
dynamicalsystems.

Dirac’s theoryof singulardynamicalsystems
A dynamical system is called singular if the expressionsp, = OL(q, 4)/04, do not determine

unambiguouslythe velocities 4~as functionsof the momentap,. Dirac has workedout the general
frameworkfor the canonicalquantizationof thesesystems.We giveherea very brief summaryof the
methodandtry to clarify the necessarydetailsin the subsequentapplications,lateron.

In a singular theory the expressionOL(q, 4)/84, and the coordinatesq, satisfy a number of
identities and, therefore,the momentaare subjectto the so-calledprimary constraintsx~(q,p) = 0.
Consequently,the Hamiltonianis determinedonly up to a linear combinationof theseconstraintswith
arbitrarycoefficients.~ p) mustbe zeroat anytime,which gives the consistencycondition

{x~(q,p), H}~= 0,

leadingusually to anumberof secondaryconstraints~ p) = 0 and/orfixing someof the unknown
coefficients in the Hamiltonian.The secondaryconstraintsmaygeneratenew constraints,and so on.

At the end,the constraintsfall into two importantclasses.In thefirst classarethosewhosePoisson
bracketswith anyof the constraintsarezero or equalto the linear combinationof the constraints.All
the othersbelongto the secondclass.
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In quantizingthe theory,the first class constraintsare imposedon the statevectorsas subsidiary
conditionsxI’/’) = 0. We cannot proceedsimilarly with the secondclass constraintsbecauseacting
with their commutatoron astatevector we wouldrun into an inconsistency.In the quantizedtheory
the secondclassconstraintsareimposedas operatorequations.In thiscasethe commutationrelations
of the dynamicalvariablesmustbe modified in suchaway that the secondclassconstraintscommute
with anyexpressionof the variables.As a solution,Dirac hasproposedthe following method:

First, we define in the classical theory modified brackets(Dirac brackets) for the dynamical
variables:

(A, B}D = {A, B}~— {A, Xl}P(~’)lk{Xk, B}~

where

~ik = (Xi, Xk}P.

In the quantizationprocedurethe Dirac bracketis replacedby the quantummechanicalcommutator
for operators,in the usualmanner.

It can be shownthat the equationsof motion remainthe samewith the newly definedcommutators,
and

[x~,AI_=0

is valid for any A, as requiredfor consistency.Now, the dependentvariablescan be eliminatedfrom
the operatorequationsx~= 0 andthe problemis definedfinally in terms of the independentvariables
alone. Unfortunately, the new commutation relations for the remaining variablesare often very
complicatedanddifficult to representby operatorsin Hilbert space.

In certaincasestherearemethodsto circumventthe introductionof Dirac bracketswith the helpof
asuitabletransformationof the variables.This is the way followed by RebbiandJohnson,as weshall
seein the nextsubsection.

5.2. Quantizationof the bag modelwith purevolumetension

As we haveindicatedpreviously, the quantizationof the bagmodel when vacuumpressurealone
providesfor the binding effects is a difficult task. Though in one space—one time dimension,where
the solutionsare explicitly known, the quantizationcan be carried out in light-cone variables,this
methodhasnot beenprovedto be applicableso far in higher dimensions.

Rebbi and Johnsonhave proposeda methodfirst which may bring the quantizationof the bag
under vacuumpressureattainablein 3 + 1 dimension.Johnsonformulates the problem in his own
language,neverthelessthe proposedprocedureis in accordancewith Dirac’s generalformalism. We
shalluseDirac’s terminology.

As a simple illustration of the method,let us considerthe 1 + 1 dimensionalmodel of subsection
4.2. A neutralscalarfield 4 is confined betweena fixed wall andamoving point ~(t). The actionfor
a- ~“0 is

~(t)

W=fdt f dz~—~~—B}
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with the Dirichlet boundarycondition

4(0, t) = 4(~(t),t) = 0. (5.1)

As we haveseen,in curvilinearcoordinatesx, r,

z=~(t)x, xE[0,l]

t =

the canonicalmomentaare

11(x) = ~4.T — ~ (5.2)

p =—~Jdxx11~.x. (5.3)

From eqs. (5.2) and(5.3) the velocities cannotbe expressedin termsof the canonicalcoordinates
and momentabecause(5.3) is only arelationbetweenthe coordinatesandmomenta.Therefore,there
is a primaryconstraintin the theory

xi~P+~fdxxHt&x=0. (5.4)

Consequently,the Hamiltonian

fdxH~+p~_L

is not unique:

H = dx(~112+ ~ + B~+ cx
1. (5.5)

In eq. (5.5) the multiplicator c is an arbitraryfunction of the dynamicalvariables.The constraint
(5.4) mustbe valid at anytime, so that

{xi,H}0=0

is necessary.A secondaryconstraintis generated

X2 = ~(qS~x — 112)Ix..i — B,

which is recognizedas the non-linearboundaryconditionof the MIT model,

The Poissonbracketof the constraintsx andX2 doesnot vanish,

{Xi, X2}P � 0,
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so that Xi and X2 are secondclassconstraints.Therefore,the consistencycondition for X2 doesnot
generatea newconstraint,instead,the multiplicatorbecomesfixed by

x2{x2,H}p=0.

This leadsto a uniqueHamiltonian.In the quantizedtheory the constraintsXi = 0, 1 = 1, 2 areimposed
as operatorequations.The coordinate~ andthe momentump of the bag’sendpointcanbeeliminated
from the theory,so the problemis definedfinally in termsof thefield variablesalone.For consistency,
however,we haveto usemodified commutatorsandto removethe associateddifficulties.

The methodof Johnsongetsaroundthe aboveprocedurewith thehelp of a suitabletransformation
of thedynamicalvariablesin sucha way that the Poissonbracketsof the new field variableswith, say,
the constraint Xi vanish.Then the Dirac bracketsamongthe new field variablescoincide with the
Poissonbrackets.Therefore, the usual commutationrelationsbecome applicable in the quantized
theory.

FollowingJohnsonfirst we write an expansionfor the field operatorswhich automaticallysatisfies
the Dirichlet boundaryconditions(5.1):

2 4 +14(x, t) = (1 — x ) ~ qk(t) ~— P2k(x)2k(2k+ 1)’ (5.6)

H(x, t) = ~ Hk(t) P2k(x). (5.7)

In the expansions(5.6) and (5.7) the functions {dP2k(x)/dX}form a completesystemin the interval
x E (0, 1) with respectto the weight 1 — x

2.
The Hamilton functionandthe constraintscan be expressedin termsof the expansioncoefficients

q andH of eqs. (5.6) and (5.7). After elementarycalculationsonefinds

H =~rI~H+~qVq)+B~,

x~=p +~(HSq+qST11),

~
2=~(qAq+HBH)-C,

wherethe matriceshIM, V,. . . ,C aredefinedas simple integralsof the Legendrepolynomials:

(I~)kl f dxi—P2k P2I,

V,,, = S~,(4k+ I), etc.

Now, let us considerthe following transformationof the variables:

= exp{_ ln ~ S}q, P = exp{ln ~ST}11. (5.8)

We cancheckby direct calculationthat

{4~,x,}~O, i 1,2,...

{H~,xi}pO. 1=1,2,...
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and therefore

{4,, P,}i~= ~ = {q,, 11,}~= S,~. (5.9)

At the end we caneliminate~ and p with the help of the constraintsXi and X2- Therefore,the
Hamiltonianwill begiven as a functionof the variables4 and11, andthe usualcanonicalcommutation
relations(5.9) are valid for 4 and11. The pricewepayis that the Hamiltonianbecomesacomplicated
functionof the variables4 and11,but the problemis at leastwell defined.

In practicewe maytry the truncationof the expansions(5.6) and(5.7) retainingonly a few modes.
Even this problemis rather involved and no explicit solution exists so far. There are, however,
interestingresults in the approximationof small oscillations arounda classical solution, which we
shalldiscussin the nextsubsection.

5.3. Small oscillation approximation

In the previousquantizationprocedurean importantpoint was the transformation(5.8) by which
introductionof Dirac bracketshasbeencircumvented.

Thereareother methodsto achievethe samegoal. Supposewe havetwo secondclassconstraints
(the numberof secondclassconstraintsis alwayseven),

XiPiO, (5.10)

(5.11)

wherep, is the momentumconjugateto q,. We caneliminatethe first degreeof freedom,if we solve
the secondequationfor q, and substituteq1 with this solutioninto the Hamiltonian,andinto all the
otherexpressions.At the sametime,we canretain the usualPoissonbracketsfor q~,Pk, k = 2,3

So we cantry to transformthe primaryconstraintsinto the form of eq. (5.10). Rebbi hasnoticed
that in the caseof smalloscillation approximationtherewas a linear canonicaltransformationwhich
could be found andperformedeasilyto implement the idea.

To illustrate Rebbi’s method,we considerthe caseof a complexscalarfield subject to Dirichlet
boundaryconditions.

The equationsof motion follow from the Lagrangian

L = f ~ — B},
bag

and the non-linearboundaryconditionhasthe form:

= —B. (5.12)

It is easyto find exact solutionswherethe bagis a staticsphere.Let us choosethe lowestenergy
solution

VBRO2sin ir(Iyl/Ro) I . t

= IT I~I exp1~—1IT~--

andconsiderthe quantizationof the smalloscillationsaboutthis static cavity solution.
We follow the usual path: an appropriatecurvilinearcoordinatesystemwill be introduced,then the

form of the primary constraintsandthe Hamiltonianhasto be found.
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Rebbi found the mapping

yo =

y~= Rx~+ ~ b,m3j~’(x’Y,’n(1~,(p))

particularlyuseful.Herex, ~, ‘p arethe deformedpolar coordinatesof y (x E (0, 1)), andR, birn arethe
coordinatesdescribingthe motion of the surface.birn is responsiblefor an arbitrarydeformationata
fixed volume,while a dilation canbe describedby R.

The Hamiltonianand the constraintshavethe form

H = f d3X(11* . flM + M
11~—Mik~ M

1 + BM’) + c~’,

= P. — f d3x(~-M
0~— H+ c.c.)= 0,

where ba is a shorthandnotation for all the boundarycoordinatesR, b,m; Mq is the inverseof the
matrix 0y1/0x1 and M = detM0. H and p~,are the canonical momentaconjugate to 4 and b,.
respectively.

As we have learnedfrom the previousexample,the consistencyconditionsof ~ leadto new
constraintsX~(equivalent to the non-linearboundarycondition (5.12)) and X~’

1~X~?~form a second
classsystem.

Let usexpandthe fields into the eigenstatesof the sphericalcavity,

qS = ~ iN,~a,mn—b7mn
l,n,.n

U = ~ ~ + b7mn)Ro’tJ~~J,(w,~x)Y,~(i~,’p),
l.m,n

whereJ, is the lth sphericalBesselfunction, J,(o.,~)= 0. N,,,, is a normalizationconstant.The static
cavity solution is characterizednow by a~

1= A, and, in the small oscillation approximation,all the
othervariablescan be consideredas small.

The next step is to expand H up to secondorder in thesesmall variables.The variableswith
different I and m decouple.Considerthe I = 1 caseas an example,

~

+ (w1,, + ir)b”,n,,b,,,,~I+ ~ + (l� 1 terms),

where Q is the total chargeof the system,

,-~.... A*A~ V ( * _l,* J~
— ~ ~a,m,,a,mn lmn imn -

l.m.n�O.O.I

In termsof the new variablesthe constraintX~becomes

= p,,,, + ~iv ~ l)~~J~-~(aimnA*_~rnnA+ ~ 1~~A)+ (higherorder terms).
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By a canonicaltransformation,we takeX~as the new momentumvariable conjugateto bim:

Pim1~irn ~

= aim,,+mA(—1)n.~j~~ +(higherorder terms),

bimn 6tmn = bim,, — A*(_ l).~i+ IT + (higher order terms).

It is straightforwardto expressH in termsof the transformedvariablesand to find the secondary
constraintsX~

(2) (1)

x~rn= {X,~
1~H}~= 0.

x~= P,,,, andX~form the specifiedtypeof secondclassconstraintpair which we werelooking for.
The variable bim can be eliminatedusing the constraintX~’and the Hamiltonianwill be expressed
entirely in termsof the field degreesof freedom.This Hamiltoniancan be diagonalizedandwe getthe
eigenvalueequation:

2’~’I Wni I t
0nI 1 1(L)L.1 2 2+ 2 210.

,, (.W,,~IT w —(w~i—IT) W,,

1+IT w —(w,,,+ir) j

The w = 0 solution correspondsto the rigid displacementof the bag as a whole, it is not a genuine
excitation. Let us denotethe positive solutionsof the eigenvalueequationby w,,. Thenthe P-wave
smalloscillationsof the bagaredescribedby the Hamiltonian

H = (Q)_~
4{4 ~ + ~ ± ~n~n*m~nm}, (5.13)

n—I m1

wherethe cnm amplitudessatisfythe commutationrelation

[Cnm, 6~mI= SnnSmm.

It can be seenfrom eq. (5.13) that the small parameterof the smalloscillationexpansionis h/Q.
Considera bagwith total chargeQ in the lowestS state.The excitationto the lowestP statewould

requiresomeextraenergy:

—I/4 —1/4

_wi~) — . ~-~) -

Thisexcitationenergyis muchlargerthanthatof requiredto replaceanS-wavestatewith aP-wavestate

in the staticcavity approximation

~Ecav = 1.351(Q/4B)”4.

Of course,a P-wavestatein a sphericalbagis not a solution— the non-linearboundaryconditionis
violated. The striking difference betweenthe numerical results above is a strong warning against
degradingthe bag model to the level of a potential picture of the old static quark model. We shall
return to this questionin the nextsection.
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5.4. Surfacetension.Point-like quarkscoupledto gaugefields

Quiteapartfrom physicalconsiderations,the introductionof surfacetensioninto the modeloffers a
greatadvantage:thereare no non-linearconstraintsin the theory.

Let usconsideran Abelian gaugefield confinedby surfacetensionandcoupledto point-like quarks.
As we arguedpreviously,a systemof curvilinear coordinatesx~has to be introduced where the
surfaceof the bagis fixed. We identify it with the x’ = 1 surface.We proceedsimilarly as in the case
of Dirac’s electronbag model. For reference,we introduce a rectilinearand orthogonalcoordinate
systemy’~.The inside of the bag is fitted in with an arbitrarydeformedsystemof polar coordinates
wherex’ varies in the interval (0, 1):

yo = xo,

y’ = X’p cos
2 I - 2 (5.14a)

y =xpslnx,
3 3

y =x.

The functionp = p(x°,x2, x3) describesthe shapeandmotion of the surface.We takenow as general
coordinatesthe A,.(x) for an Abelian gaugefield, ~, for the nth quark(~= x°= y°),andp(x2,x3) for
the surface.

Let usconsiderthe caseof aquark andantiquarkinside the bag. The actionW is written as

w = — f ~ + j~A,.) — a- f M dx°dx2 dx3
x1E(O, 1)

_±mfd4xV~,oog,.~S3(xr_~), (5.14b)

where g,.~= ~ and J = V—detg,.~is the Jacobianof the invariant four-dimensionalvolume
element.M2 is the determinant of g,,~(a, b takeon the valuesof 0, 2, 3),while the currentfour-vector
of the quarksis given by

2
.~,. ~ — ~ V ~ ~ r — L.r\ — — —

j ~ — -i ~, ~ ~,x s,,,, g~— g
2 — g.

~‘ n=i

Hereg setsthe quark—gluoncoupling.
This is also a constrainedsystemdue to the presenceof vectorgluon fields, but its handling does

not require extraeffort relativeto the conventionalcase.
Without going into the calculationaldetails we summarizethe results. The Hamiltonian has the

following form:

H = f d3x(_g~5BrB5+~Ke?setaFrtFsu)+ ~ (m
2—e”~p,~’~p~)”2+

x1E(O, I)

+ f [(!~)2 + a-2] U2(g

22g33— g~3)”
2dx2 dx3+ f d3x(c

1X1+ c2X2), (5.15)
x’=I

whereBTM is the canonicalmomentumconjugateto A,., Xi and X2 are first class constraintsof the
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vector gluon theory,

Xi = B°(x)= 0,

X2 = Bç(x)—~ g,,53(x

They aremultiplied by the arbitrarycoefficientsc in the Hamiltonian(the gaugefreedomis reflected
in this arbitrariness).The indices r, s, t, u take on the values of 1,2,3. e’~is the inverse of grs’
K = V—detgr.and~f”, p,,~,.are definedby

1~~*(x2x3)fl(X2,X3)_ifdXIXIFriB~~_!~ ~p,5(x2—~)S(x3—~),
p pn=I

0

Pn*r = Pnr + ~

where~(x2,x3) andp(x2, x3) as well as Pnr and~ are canonicallyconjugatepairsof variableswith the
Poisson brackets

{p(x2,x3),~(x2’,x3)}~= S(x2— x2)S(x3— x3),

{~,Pn’s} = Snn’5rs

Furtherwe getthe following boundaryconditions:

B ‘L~’
1= 0,

and

(5ri ~B’ —~B’—Ke~IertFst)i = 0.

Thereareequivalentto n,.F
TM”I~..

1= 0 in the Lagrangianformulation. The radial velocity p is defined
hereas p = {p, H}~in termsof the coordinatesand momenta.

The first term in the Hamiltonian (5.15)is the contributionof the vector gluon field as expressedin
curvilinear coordinates.The third term is the surfaceHamiltonian. A fixed point in the rectilinear
laboratory coordinatesystemperforms a nonphysicalmotion in the curvilinear systemaccordingto
the specifiedparametrizationof (5.14). This contributionis includedin the momentum~(x

2,x3), so it
mustbe subtractedaway.That is the reasonthat fl*(x2, x3) occursin the surfaceHamiltonian.

TheHamiltonian in (5.15) is rathercomplex.It will be usefulto consideran approximationin order
to gainsomeinsight into the surfacedynamicsand its connectionwith the gluon field. Let us assume
that the quarks are heavy and approximatethem by two external sourcesfixed on the x3 axis at

= ±a/2.
If a is large(relativeto a’3), thereis anapproximatestatic,classicalsolution: a vortex,which has

beendiscussedin somedetail in subsection3.3. We shall considerthe quantizationof the small radial
oscillationsaroundthis classicalsolution. The variablesdependonly on x’ andx°.

Instead of using first class constraintsand subsidiary conditions, let us introduce two extra
constraintsinto the theory,

X3 = A
0(x) = 0,

X4 = (KeirAr) i = 0.
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X~’ i = 1,. . . , 4 form a secondclass constraint-systemand they become operatorequationsin the
quantizedtheory. If we restrictourselvesto radial excitations,it is easyto showthat A0,B°,A1,B’
can be eliminatedfrom the theory,A2, B

2 form an unconstrained pair of variables, while A
3, B

3 are
constrained by

x=fdxlB3=g/2ir

= fdx’x’A
3 = 0.

The form of the vortex solutionin termsof thesevariablesis given by

B’~=Sr3.~
1X’, Ar=0,

P = Po Po = g2/2ir2a-.

Let us introduce

and expand the Hamiltonian up to second order in terms of the small variables. Wefind the following
result

H = f dxI[(~xI(E~)2+ 2p~2x’(~)2) ~+ (2~L~F~2+~x’F~3)2ITaJ+

I ~*
2+(cnumber)

Po 4ITap
0a-

where

B~(x5=fdX2 a/2 dx
3B~(x),

0 —a/2

~= fdx2 ~2 dx3~,
o —a/2

= ~+~-~_~fdx1(x1)2F,
3

F,, = A21, F,3= A31,

and we have two second class constraints

x=fdx’B~=o~ ~=fdx1x’A3=0.
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The correspondingDirac brackets(valid in the interior points)aregiven by

{A2(x’), B.~(x”)}D= S(x’— x”),

{A3(x’), B.~(x’)}D= (S(x’ — x’) — 2x”),

{�, ~ 1.

All the otherbracketsareequalto zero.
It is thenstraightforwardto derive the Hamilton equationswhich haveto be solved togetherwith

the boundaryconditions

Fi2Ix.1 = 0,

(F,3+ 2ir
2aa-p~ x~=i= 0.

We find the following generalsolution

A
2 = i~ p~ox’~- J~(A1x’)~- (ai exp{_i~ t} _h.c.)~

B~= ~ pJ1(A,x’) ~- (aj exp{_i~t}+ h.c.),

A3 = ipo ~ -~- (Jo(yaXi) — -~-J1(7~))f (i~exp{_i .~ t} —

B~= p,~x’~ (Jo(vix’)_~-J1(y~))~(b1 exp{_i~ t}+h.c.)~

� = ~ -~- J,(y,) ~- (b~exp{_i~t}+ h.c.), (5.16)

whereA, and y, aredefinedby the equations

JO(AI) = 0,
2

(~i+ h)J1(71)= 2y~J0(y~).

Jk(x) is the kth spherical Bessel function. The normalization factors are

— /2ITa ~

“ii — ~ JIVtI),

I 4 2
,~ ,i y+6y~—3 3/2

— ~ 2 ~ Po Ji(yi).

One can see by inspection of eqs. (5.16) that there are two types of radial excitationsof the vortex.
A color magnetic field alongthe vortex togetherwith anazimuthalelectric field can be excitedwithout
forcing the surface to oscillate. The other case is a collective motion, wherethe surfacemotion is
intimately connected with the gluon gauge fields.

It can be shown that all the prescribed commutators are satisfied in the internal points of the bag, if
we assign for a and b the following Dirac brackets

[a,,afl =

[b1,bT] =
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breathing mode string-like oscillation

Fig. 5.1. Excitations of the elongatedbag (vortex tube) with small amplitudes.The breathingmode of a massivegluon excitation and the
string-like oscillationareshown.

andthe Hamiltonian hasthe form

H = ~-‘ ~ (a1a~+ a~a~)+ ~ -~ ~ (b,b7+ b~b1)+ (c-number).
I Po i Po

The general case can be treated along similar lines. The following physical picture emerges: there is an
infinite massspectrumof gluonsgeneratedbygaugefield confinement.Therearecollectivebreathingand
puregluonexcitations.We get alsomasslessexcitationspropagatingwith the velocity of light alongthe
vortex. Thesemodescorrespondto the oscillationsof a string of finite width (electric vortex)without
internalexcitations(fig. 5.1).

5.5. Theemptybag and thephysicalstructureof the vacuum

For theoreticalconsiderationsand later spectroscopicapplications it would be important to
understand the possible relation between an empty bag and the structure of the physical vacuum.

Onecandemonstratethe existenceof an “empty” bagin baggedquantumtheory as follows. It is
known from the first publicationof the M.I.T. group [1.1]that thereexistsan exact solutionin 1 + 1
dimensionfor masslessfermion fields confined by pure volume tension.Here we shall use their
elegantresultsfor demonstration.

Considerthe spinorfield i/i(z, t) in 1 + 1 dimensionconfinedby purevolume tension.Insidethe bag
t/i(z, t) satisfies the free Dirac equationand the linear boundarycondition (4.1) together with the
non-linearequation(4.3) arerequiredon the boundary(end points) of the one-dimensionalbag.

It can be shown that in light-conevariablesx~= r = (t + z)/V2, x~= x= (t — z)1V2 the general
solutionis of the form

,~, (ig(x)

\f(r)

for the two-component spinor field t/i. The lower componentf(i-) may be expressedin terms of the
dynamicalvariables

bm(T) = bm exp{—2irim(Br/p)}

as

f(r) = 24.~J~m-~ bmexp{_ 2ITim

wherethe prime on ~ indicatesthat m is summedoverhalf-odd integers.A similar, thoughformally
muchmorecomplicatedexpansionmaybe written for g(x) through a non-lineartransformation.
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The dynamicalvariablesbm(~)require the anti-commutationrelations

{bm(r), b,,(r)}.4. = 0,

{bm(r), b(r)}+ = Sm,,

and the momentumoperatorp = p~in light-conevariablescommuteswith all bm’S. The momentum
operator P and the averagecoordinate 1(r) in the light-cone system are independentcanonical
variables with regard to the bm‘s satisfyingthe quantummechanicalcommutationrelation

[1(r), P1 = i.

The spectrumof P is continuousin the (—~, ~) interval.
The HamiltonianoperatorH P in the light-coneframeis given by

H = ~. m~-co mb~bm. (5.17)

To achieveapositiveenergyspectrumwe must interpretthe bm ‘s as follows (m > 0):

b,. annihilatesa fermion
b_rn d~ createsan antifermion

createsa fermion
bi~im dm annihilatesan antifermion.

Then we can write the Hamiltonian(5.17)as

2irBf’c-.i + + mol
H=—j~j--1 L m(bmbm+dmdm)+~—~1,E Lm-l/2 .~ITi~j

wherewe haveintroducedm0, the massof the empty bag,which is undetermineddue to the infinite
zero-pointfluctuations.The expressionfor the fermionchargeis given by

~ (b~mbmd~mdm).
m i/2

Briefly summarizing,thereare positive energyfermions andantifermionswith a (mass)
2spectrum

of half-odd integral multiples of 4irB, and the possible states of the bag are representedby
polynomialsof b~andd~acting upon the empty bag state, I~~)which is definedby

drn~11p)z bmlflp)0,

PI~~)=

Unlike the vacuumin conventionalfield theory, the empty bagis a particle state in the quantum
theory of a single bag.Since [F, b~]= [P,d~]= 0, the momentumof any statecreatedby operating
with b~or d~on theemptybagis the sameas the momentumof the emptybag. In general,theempty
bagcanhaveamass m

0as well as momentump.
Onenotesfrom the abovediscussionthat thereis an ambiguityin settingthe absolutescalefor the

hadron spectrum when the bag is quantized in I + I dimension.This is associatedwith the in-
determinancyof m0dueto the infinite zero-point fluctuationsof the confinedfields. Only the energy
differencesaredeterminedby the valueof the vacuumpressureB.
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If we try to broadenour view beyondthe quantizationof a single bag, we have to recall from
section 1 the two-phasepicture of the physicalvacuum. The normal phaseof the physicalvacuum
does not allow for the propagationor fluctuation of hadron constituentfields. However, in the
unobservablephysicalvacuumtherealwaysoccursmall fluctuationsas closedhadrondomainsin the
secondphaseinside which quarkandgluon fields mayfluctuate aroundazeroaveragevalue.

It is an unsolvedproblemyet whetherthe interpretationof the “empty” bagas a physicalparticle
will be maintainedwhen the structureof the physicalvacuumand the theoryof bags in interaction
(fissionand fusion) are better understood,or the emptybag perhapsdisintegratesinto the fluctuating
hadrondomainsof thephysicalvacuumin ahigherorderapproximation.We find thefirst possibilitymore
likely.

6. Adiabatic bagdynamics

The bag as a dynamical systemrequires a rather complicateddescription in terms of several
dynamicalvariables,evenif only a few quark and gluon constituentsare presentandthe collective
variablesof the bag shapeare representedby aminimal numberof necessarydynamicaldegreesof
freedom.

A greatsimplification occurs,if inside the dynamicalsystemof the bagwe identify a slowly moving
subsystemwhosemotion is instantaneouslyfollowed by the rest. This separationof the systeminto
two parts is the working hypothesisof the adiabaticbag dynamics.The calculation of molecular
spectra is a classical example for the hypothesisof adiabatic dynamics in quantummechanical
framework.

6.1. Born—Oppenheimerapproximation

In order to understandthe basic idea of the adiabaticapproximationmethod,let us considera
moleculewhich consistsof a given numberof electronswith massm andof atomicnucleiwith mass
M. The Hamiltoniancanbe written in the form

H~ZKR+Kr+ V(r,R),

where

K~=-~~

is the operatorfor the kinetic energyof the electrons(light particles),and

KR=-~~

is the kinetic energyof the nuclei (heavyparticles).The electroncoordinateswith respectto the
centerof massaredesignatedby r, andR standsfor the relativecoordinatesof the nuclei. V(r, R) is
the potentialenergyof the interaction.

In molecularphysicsdue to the large ratio M/m of nuclear massto electron mass the nuclear
periodsare much longer than the electronicperiods. It is thena good approximation to regard the
nuclei as fixed calculating the electronic motion. In the second step the nuclear motion can be
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calculatedunder the assumptionthat the electronshavetheir steadymotion for each instantaneous
arrangementof the nuclei.This is the Born—Oppenheimer,or adiabaticapproximation.

Mathematicallyit is basedupon the hypothesisthat the operatorKR for the kinetic energyof the
heavy particlescan be treatedas a small perturbation.Thus, in the zerothorder approximation the
Schrödingerequation

~ + V(r, R)}4on(R~r) = �~(R)q,,,(R,r) (6.1)

gives the stationarystatesQ,,(R, r) for fixed valuesof the coordinatesR of the heavyparticles.The
index n standsfor the quantumnumbersof the stationarystates;the energies�,,(R)and the wave
functions‘p,,(R, r) dependuponR as upon a setof parameters.

Assuming that the solutions of (6.1) are known, the eigénfunctions of the complete Schrödinger
equation

{—~~ ~ V(r, R)}*(R~ r)= E*(R, r) (6.2)

can be written as

~/i(R,r) = ~ 4,(R)’p,,(R,r), (6.3)

sincethe functions ‘p,(R, r) form acompleteset for given R.
Substituting (6.3) into (6.2), after multiplication by ‘p~(R,r) andintegratingover the coordinatesr,

we find the following systemof equationsfor 4)m(1~

(KR + �m(R)— E)43rn(R)= ~ Amn~n(R). (6.4)

Herethe operatorAm,, is definedby

Amn ~ drço~(R,r)-/~-’p,,(R,r) /~——fdrço~(R,r)K~ço,,(R,r).

The systemof equations(6.4) is exact.In adiabaticapproximationtheright-handsideof (6.4) is set
to zeroandthe systemof equationsfor cbm(R) decouplesinto independentequations,

rv ~. ID\1.LO ID\_ E’O .LO

L”R �mI~1~)JWmv~1~J—

for eachstationarystatem of the light particles.One notesfrom (6.5) that the motion of the heavy
particlesis governedby the potentialenergyEm(R), which is the energyof the light particlesfor fixed
positionof the heavyparticles.

Thus,in adiabaticapproximation,the wave function i/i(R, r) reducesto the simple product

*rn~~= çb’n,(R)’pm(R,r)

so that for each stationarystatem of the light particles,thereare severalstatesof motion of the
heavyparticleswhich aredistinguishedby the quantumnumbersr’.

Using perturbationtheory it canbe shownthat the condition for the applicability of the adiabatic
approximationreducesto the inequality

I(’~pIj~mnI&v’)I~ — E~W.I (6.6)

for m~ n and for arbitraryquantumnumbersii and ii’.
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A sufficient conditionfor the applicability of the adiabaticapproximationis that the frequenciesof
vibration of the nuclei w,,. should be small in comparison with the transition frequencies between
electronic states:

hW,r 4 l�m— E,,I. (6.7)

The condition (6.7) is sufficient but not necessary. In some cases the adiabatic condition (6.6) is
satisfiedevenwhen(6.7) is violated.

For aqualitativediscussionof the aboveconditionsin molecules,let us denotethe linear dimension
of amoleculeby d. Thenthe energyof the electronsin the moleculeis of the order

� —~h~/md~. (6.8)

The vibrationalenergyof the nuclei is

E~Ib= hVk/M, (6.9)

where k is the coefficient of elasticity which determines the potential energy of the vibrations of
nuclei:

2
�k=

1—~j —-~. (6.10)
\lfl~ /R=R0 U

Substituting (6.10) and (6.8) into (6.9) we find

E~1b=~2�

where ~ = (m/M)”
4 is a small dimensionlessparameter in molecular physics.

In the Born—Oppenheimer expansion of the molecular energies in powers of the small parameter ~,

the energy of the electrons is of the zeroth order with respect to i~ the vibrational energyof the
nuclei is proportional to ~2 and the rotational energy of the molecule is of the order of ~.

6.2. Charm onium

The charmonium bound state may be treated in adiabatic approximation as a quark molecule whose
charmed quarks correspond to the slowly moving heavy particles of the system. In close analogy with
the hydrogen molecule we may conjecture the correspondences

protons — heavy charmed quarks
electrons — light quarks,masslessgluons, collective bag variables

Coulomb potential — instantaneous ce-interaction.

The adiabatic approximation is defined first in terms of the simplified problem where the dynamical
degrees of freedom are the non-Abelian gauge field A

1,., the ordinary, light quark fields q1,,(x), the
collectivevariablesof thebaganda pair of staticsourcesof thegaugefield at positionsr1 and r2. The
static sources consist of a pair of color spins represented by the ~A1matricesof color SU(3)with the
interaction

Hi,,, = ~gA1o(r,)A~ + ~gA1o(r2)A~2),

where ~A(1.2) are the color spin degrees of freedom of the two static sources.
We shall assume that the ground state eigenvectors and eigenvalues of the static source Hamil-
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tonianaregiven by
IIstatJX(Ti, r2)) = E(r1, r2)IX(rI, r2)),

where r~and r2 are parametersin the Hamiltonian, similarly to the variables R in the Schrodinger
equation (6.1). In adiabatic approximation at any instant when the heavy quarks are located at ri and
r2, the other dynamicaldegreesof freedomare describedby the state IX(r,, r2)>, that is the light
variables can instantaneously readjust themselves to the slowly moving sources and remain in ground
state.

In this molecular approximation at every instant of time the energy stored in the gauge field and
light quarks, together with the surface and volume energies of the bag, is

E(r,,r2)= V(r), r=Iri—T21,

so that the charmoniummoleculeis describedby the Hamiltonian

V(r). (6.11)

When the light quarks are ignored, the Hamiltonian in (6.11) determines the charmonium spectrum
in first approximation (see subsection 7.3). The Yang—Mills color electric field between the charmed
quark—antiquark pair becomes squeezed into a tube-like configuration when r is large.

Kogut and Susskind have considered the effects of the light quarks. As r and the field energy
increase, it becomesenergeticallyfavorableata certainpoint to lower the energyby creatingordinary
q~-pairsinside the stretchedtube-like bag:the long rangeforce canbe screenedby producinga color
neutralizinglight quark neareachheavy quark. Therefore,as r—*~the energyof a ce-quarkpair
surroundedby a screeningcloud becomesthe sum of the massesof two charmedmesons.The bag
splits and disintegrates into a pair of D and D mesons.

In molecular physics the ratio of masses is m/M — h0~,so thatexcellent quantitative calculations
are possible.In the charmoniummolecule,however,the excitationof the light dynamicaldegreesof
freedom, a light q~-pair, say, requires about 600 MeVenergy. This is not a very large energy on the
scale of charmonium physics where a typical level separation is also in the energy range of
5—600 MeV. The notion of an effective potential V(r), and the adiabaticpicture in general, has only a
limited region of validity in charmonium physics.

6.3. Nucleonmodelin adiabaticapproximation

We shallmotivatehere,on the basisof dynamicalconsiderations,the bagmodel’s versionof what
has become the classical quark model: the description of the SU(6) baryon multiplet 56 and meson
multiplet 35. The underlying adiabatic bag dynamics will be stressed here, and spectroscopic
considerationsareleft for subsection7.1.

The lowest allowed color singletstatefor the baryonhasthreequarks,whereasthe lowest meson
carriesaquarkand an antiquark.The quarkssatisfy the masslessfree Dirac equationinside the bag,
under the assumption that the presence of the color gauge fields may be neglected in zeroth
approximation.An additionalquarkmassterm canalwaysbeincludedin the Dirac equation.

In contrastwith the charmoniummolecule,we shallapplyherea different adiabaticapproximation
scheme for the description of light quarks inside the bag. The collective variables of the bag are
regarded as the slowly moving part of the system in comparison with the massless quarks, and gluons
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in later considerations.We shall conjecturethe following correspondencewith molecularphysics:

nuclei — collectivebagvariables
electrons — light quarksand masslessgluons.

As afirst step, the bagequationsare solvedfor a fixed static surface,so that the energylevelsof
the confined quarks or gluons are in analogywith the energy levels �,,(R) from the Schrodinger
equation(6.1) for fixed positionof the nuclei. The quarkenergylevelswill dependon the shapeof the
baggeneratingpotentialenergyfor the collectivesurfacevariables.In the nextstepwe haveto solvea
generalizedSchrodingerequationwith the Hamiltonian of the surfacevariablesin the presenceof the
potentialenergygeneratedby the confinedquarks.

The lowest massstatesareexpectedto haveminimumkinetic energyfor the light quarksandthus
the quarksshouldmovein the mostsymmetricalway in space.We mayconjecture,therefore,that the
wave functions of the quark orbits dominantlyexert a spherically symmetric pressureon the bag
surface. Accordingly, the surface which results from balancing this pressure against the homogeneous
andisotropicbagpressureB and surfacetensiona-, should be dominantlyspherical,and classicallyat
rest.This is called the staticbagapproximation.

As we shall see,the surfaceis fuzzy quantummechanicallyand the static bag approximation is
valid only in an averagesense.We note here that the quark wave functions effectively satisfy the
linear M.I.T. boundarycondition (4.1) on a static bag surfacein the absenceof gluon fields (see
subsection4.1 for the a~—*0limit).

In adiabaticapproximation,the wavefunctionmaybe written as a product

,(n) ~ — (n) ~ \ (ki)( \ (k
2)~ -~ (k3)(

‘P{k,, k2. k3}kP’ r~,T2, T31 — {k1. k2. k3}\P Xp kTiJ~p kT2JXp ~r3
where the spinor wave function ~~“~(r~)is an eigenfunction of the free Dirac equation inside a
spherical surface of radius p,

(—iaVrj + f3m1)X
t~”1(r~)= �1(p)X~”~(r~) (6.12)

underthe constraintof the linear boundarycondition

i - ax~’~(r
1)= i3x~(r~) (6.13)

on the static surface.The suffix i refers to the ith quark,and k, standsfor the k,th eigenvalue.The
equationsare similar for the othertwo quarks.

For given quantumnumbersk1, k2, k3, the wave function of the surface satisfies the eigenvalue
equation

Jdp’K(p,p’)ct~~.k2, k3}(P) + [B ~ + ± �~(p)]4{k. k2, k3}(P) = ~ k2. k3}(P) (6.14)

in adiabaticapproximation.One notesthe closeanalogywith eq. (6.4) in molecularapproximation.
First, we shall solvethe quarkproblemfor a fixed bagradiusp. Sincethe equationsareidenticalfor

the threequarks,we shalldropthe quark index in what follows below.Further,the quarkmassesand
B are set to zero here, though they may be included in a more general treatment, in a trivial manner.

The requirementof sphericalquarkpressureon the surfaceallows only J= ~ solutions to Dirac’s
equation,with two values ,c = ±(J+ ~) for the Dirac quantum number. The values of K label the
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two states of opposite parity for each value of J. For J= ~ either K = —1,

t.f r\
_______ jlJo(~Wn._~)Urn

(n) N(w,,) p
1/2. m(T) — I

\/4ir ~ .7 r\ r
\Jit,~t0n._i~)O;Um

or K = 1,

1.. / r\
I lji(W,,

1JU Urn
(n) — N(w,,,,)i ~ p~ r

— 1 r (6.16)
‘~‘~ \Jo(wn.i ) Urn

for the solutions of the massless Dirac equation. Urn is a two-componentPauli spinor and j1(z) are
conventionalsphericalBesselfunctions.The index n labels the eigenfrequencieswhich are deter-
minedfrom the boundarycondition (6.13). The correspondingeigenvalueconditionfor the frequencies
(3_In.,,

= — Kji(W,,,,),

or

tan~,,,, = K. (6.17)
W,,,, + K

Wechoose positive (negative) n sequentially to label the positive (negative) roots of eq. (6.17). The first
few eigenfrequenciesfrom (6.17) are

ic—h: o~_,=2.O4; ~‘~2i—

5.4O,

K=+1: w
1~3.8l; (0217.00.

Thereappearsa normalizationconstantin (6.15) and(6.16) which is definedby
3 1/2

f _____________________
N(o..,,,,)1 3 . 2\2p (w,,,, + K) sin &.,,,,

Now we have all the necessary ingredients to- construct the nucleon wave function in adiabatic
approximation.The two up quarksandthe down quark of the nucleonform a color singlet state,so
that the spin—isospin-spatialstatemustbe totally symmetric.We shallnot give herethe rathertrivial
procedureof distributingthe up anddownquarkswith J = amongthe availablequarkorbitals of the
staticbagwith fixed radiusp.

The nucleonwavefunction in groundstate is

= °~(pX(rIX~(T2X~r3, (6.18)

wherethe abovementionedsymmetrizationof ~fris understood.The up and down quarksoccupyin
(6.18) the same quark orbital with the lowest positive frequency o,~= 2.04.

Given the wave function i~ in eq. (6.18), the radial shapeof the bag is determinedfrom the
eigenvalueequation(6.14) which is now

Jdp’K(p,~ + ~ ~~“
1(p)= E~”~(p), (6.19)
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since B was set to zero. One notes the similarity of (6.19) with eq. (2.25)for the radial excitations of
Dirac’s bubble. If a/2 in (2.25) is replacedby 3a~1we get the same integral equation which was
solved in subsection 2.2. Only the potentialenergyfor the bag surface is different in its strength.

The first few eigenvaluesof eq. (6.19) aregiven by

1Eo7.12
(4ITcrY”~~E~= 8.40 (6.20)

(E2= 9.49,

andthe correspondingwave functionsareshownin fig. 6.1. Theydescribethe radial excitationsof the
surfacewhenthe threequarksoccupythe lowestorbital in adiabaticapproximation.Figure6.2 shows
the probability distribution for finding the bagin its groundstatewith aradiusbetweenp andp + dp.
The arrow indicatesthe classicalradiusof the staticbagwhich is given by settingthe kinetic energy
~2 of the surfaceto zero andminimizingthe staticclassicalenergy

E,, = a-4-1rp
2 + (3w

1_,Ip)

with respectto the bagradiusp.
As we can see from fig. 6.2 the surfaceof the bag is blurred quantummechanically,though the

probability distribution is sharply peakedaroundthe classical radiusof the static bag. This obser-
vation servesas the basisof the staticbagapproximationwherethe kineticenergyof the surfacefrom
the quantum mechanicaluncertaintyrelation is neglectedand a sharp boundary is assumed,ap-
proximately.The energyof zero-pointoscillationsof the surfacegivessomecorrectionto theclassical
energy, though the ground stateenergy at the bottom of the excitation spectrumcan always be
adjustedby a suitablechoiceof the strengtha- of surfacetension.

It is interestingto observethat theexcitationspectrumof thesurfacein (6.20) is well approximated
by the WKB method,or eventhe small oscillationapproximationabout the static equilibrium yields
reasonableresults.Both methodswere discussedin subsection2.2, and we give herethe results,for
the sakeof comparison:

E’ E~./KB E~,,= E,, + (n +

n=0 7.12 7.10 7.16
n = 1 8.40 8.39 8.84
n = 2 9.49 9.49 10.52

Il_oIl?) 2

~ ~ ~ 0

Fig. 6.1. The quantum mechanicalwavefunctionsof the surface Fig. 6.2. The probability densityfor finding thenucleonwith radius
are shownfor the groundstate and the first and secondexcited p in itsgroundstate.p~standsfor theclassical radiusof thestatic
statesof thenucleon, bag.
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The energyspectrumE~VKB is calculatedfrom the Bohr—Sommerfeldquantizationconditions(2.18)
and (2.19).The frequencyp of the harmonicoscillationsaboutthe static equilibrium of the bag,and
the correspondingquantumenergyhi.’ is takenfrom (2.15) wherea/2is replacedby 3w~_1.

In the derivation of the energyspectrum(6.20) we haveassumedthat the three coloredquarks
occupythe lowestorbital in a bagwhoseradiusadiabaticallyvariesin time. Evenwhenthe quarksare
in their ground states,on the lowest orbital, thereare surfaceexcitationsas a manifestationof the
independentdynamicalvariablesof the boundarybetweenthe hadronphaseand the vacuumphase.
This spectrumis analogousto the vibrationalenergiesof the heavynuclei in molecules.

When the surface is in its ground state,there are several quark orbitals available for quark
excitationsinside the bag. In orderof increasingenergywe find

IS,,2with = 2.04,

1P112with = 3.84,

2S,12with = 5.4,

etc.

Theseexcitationsareanalogousto electronexcitationsinside moleculeswhen the heavynuclei are in
their groundstate.Sincethe excitedquarkstatesgeneratea differentpotentialenergy(“van der Waals
force”) for the surface,the wave function of the bag’sshapevaries with quarkexcitations.

Thereare thena third type of excitationswhenboth the surfaceandthe quarksareexcited.
As we havediscussedin subsection5.5, it is ratherproblematichow to relatethe eigenvalueseries

of eq. (6.20) to the measurablehadronspectrum.The lowest eigenvalueE0 differs from the static
energy E~,by the contribution of the radial zero-point fluctuation. By introducing new surface
coordinatesdescribingdeformedbags,E0 will alwaysbe shifted to higher valuesdueto the vacuum
fluctuationsof the newvariables.The energydifferences,however,will stay approximatelyfixed.

As in the caseof the exactly soluable1 + 1 dimensionalmodel, we haveto renormalizethe energy
levels,anda new dimensionalparameterm0which is undeterminedwill appear.This maybe chosento
be the massof the emptybagif it is a physicalparticle,or zeroif it somehowturns out to be part of
the physicalvacuum.Or equivalently,the two dimensionalparametersm0 anda- canbe usedto fit the
mass of the nucleonand the first radial excitation.Then the mass of the empty bag is fixed and
calculable.

The strategyof the M.I.T. groupwho haveinitiated the spectroscopiccalculationsfor hadronsis

different. In the caseof purevolume energy,whena- is set to zeroalreadyin the Lagrangian,only the
staticbagapproximationis availableso far. Thereis a hopethatthe quantummechanicalfluctuations
of the bagsurfacemaybe calculatedin the future following the methodof subsection5.1.

In the static bagapproximationwith pure vacuumpressurethe staticenergy

E0, = B

is minimized with respectto the bagradius— an equivalentprocedureto that solving the non-linear
boundaryconditionfor astatic,sphericalsurface.The minimized energyis acceptedas the average
massof the N — A systemand B is fixed by this requirement.The zero-pointenergyof the collective
motions is not consideredatthis level. The zero-pointenergyof the gluon andfermionfields is taken
into accountby consideringa fixed surfacein adiabaticapproximation,aprocedureto be discussedin
the nextsubsection.
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If we considera staticand classicalsurfacethe resultsarepractically independentof whetherwe
use surfaceor volume tension.We shall presenthere the original M.I.T. version with pure volume
tension.

The valueof B from the averagemassof the N — A systemis B i/4 = 120MeV. Thequark excitation
spectrumis shownin fig. 6.3. Only thosestatesare depictedwherethe quarkpressureis spherically
symmetricon theboundary.

As an applicationof the nucleonmodel in static bag approximationwe calculate the magnetic
momentand chargeradiusof the proton andneutron,and the axial-vectorchargeof the proton. We
shallpresentherethe original M.I.T. versionwith pure volume tension.

The magneticmomentof a confinedquark in the sphericalbagis definedby

3i ±iz=Qj dr5rx~a~I~r,
bag

wherethe chargeQ is ~ for an up quarkand — ~for a down quark.The wave function is given by
(6.15). After elementarycalculationwe find

po 4w~_i—3 6 1
— 12 W,_i(W,_, — 1)’

wherePo is the static radiusof the bag:

‘/4

~°~4ITB

2O~

1800 4N(.~-)2N(-~-) lS~ip~~ 2~(+-),L~~-)

_______ is,,2 iP,~
2 ______ ~

4sc~+)

1G00 2N~3.)1N(4÷) 1St, 25~/

>

1400 2N(~-)1N(~-)~ 1S~ip~

1200 N(~+) — is

Fig. 6.3. Low-lying three-quarknonstrangebaryon stateswith Js~in thequark bagmodel.
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Using the completewavefunctionof the protonwe find the gyromagneticratio of

g~=2M~i.=2.6

from (6.21), if the value Bu/4= 120MeV is takenfrom a fit to the averageN—A mass.
The neutron’smagneticmomentis calculatedanalogouslyandgn = — ~ is obtained.Onenotesthat

the origin of the magnetic moment in the quark bag model is quite different from that of the
non-relativisticquark model. Confinementsetsascalefor the wave functionof masslessquarksand
the magneticmomentcomesfrom a crossterm betweenthe upperandlower componentsof thewave
function.

The contributionof a quarkorbital to the chargeradiusis definedby

(r2) = Q f d3r~(r)r2~(r),
bag

which may beevaluatedfor the wavefunction (6.15) or (6.16):

/ 2~_ p
0

22w3,,.,+2Kw2,,,,+4w,,,,+3K

For the protonwe obtain

= 1.04fermi

for the neutron(r2)~’2= 0.

The axial-vectorcouplingconstantof j3-decayis definedfor the protonas

= (p~sz= ~if d3riIi~(r)r
3a-~~Ii(r)IpS~= ~), (6.22)

bag

where r3 is the third componentof the isospin in (u,d) space.From an explicit calculationof (6.22)
one obtainsfor the proton

5 / 2w,_~—3\
= ~ — 3( — 1)) = 1.09.

In the non-relativisticquarkmodel g~= ~.The resultof the quark bagmodeldiffers, sincethe lower
componentsof the quark wave function in (6.15) are importantand haveoppositespin orientation
from the uppercomponents.

Needlessto say that a very similar calculationcan be repeatedwith surfacetension instead of
vacuumpressure.Whatmakesthe latter calculationinterestingis that it is comparablewith the results
from the adiabaticapproximationwherethe surfaceis smearedout quantummechanically.The static
formulae,say(6.21) for j.t, will be weightedthenby the probability distribution of finding the surface
betweenthe radiusp andp + dp:

4w,_,—3 ~ (°)* (°)

= ~., ~ — ~ dp~ (p)p4 (p). (6.23)~ 1) J
0

Equation(6.23) implies thatthe static radiusp~in the formula (6.21) will be replacedby the average
valueof p in the quantummechanicalground stateof the surface. Since ~*(p)~°)(p) is strongly
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peakednear the static radius, fig. 6.2, the static nucleon parameters~, and (r2) do not change
significantly in adiabaticapproximationwith a blurredbag surface.

The effectsof the quark—gluoninteractionwill be discussedin subsection7.1. Incidentally,this will
bring up the interestingphenomenonof the zero-pointfluctuationsof confinedfields.

6.4. TheCasimireffect

When a quantumfield, say the electromagneticfield, is confined to a finite region of space, a
measurablelong-rangeforceexertedon the confiningwalls is generatedby the zero-pointfluctuations
of the field.

This effect may be understoodby recalling that the quanta of the confined field occupy the
eigenmodesof the confining geometry.Now, the zero-pointenergyof the radiation field is given by
~hwper normalmode. But the frequenciesw dependuponthe geometricalconfigurationof the walls.
Thus, changingthe positionof the walls changesthe frequenciesw of the normalmodes,and hence
changesthe zero-pointenergyof the radiation field. This changeof energywhich dependson the
positionof the confining walls is the potentialfunctionof the abovementionedlong-rangeforce.

The first zero-pointenergycalculationwas performedby Casimirin 1948,for the electromagnetic
field confinedby two perfectlyconductingplatesof crosssectionA separatedby adistanceL (seefig.
6.4). Casimirhasfound the zero-pointenergy

2 2
2 lIT 1 ITIICAE

0=3ir ~ (6.24)

betweenthe two plates, where A is a cut-off parameterat very short wave lengths. The physical
problemsuggeststhe useof thewavelengthas a cut-offquantity,sincethe platesaregood conductors
at long wave lengths,but their conductivity becomespoorat sufficiently shortwave lengths.Anyway,
A -+0 is takenin the ideal limit.

The first term in (6.24) is proportionalto the volume of the confininggeometryanddivergentin the
A -÷0limit. The secondterm is also divergent being proportional to the surfaceof the confining
geometry.These two terms are not physically measurable,since the quantumfluctuationsof the
outsidefield whenaddedto (6.24) cancel the geometry-dependentdivergentparts.

Nevertheless,the third term in (6.24) is finite (independentof the cut-off) andmeasurable!Thus the
net force betweenthe two platesis attractiveand given by

F=_~öhc~ (6.25)

to be expectedon anyparallelplateswhich areconductingfor wave lengthssignificantly shorterthen
the separationof the plates.

The force (6.25) was measuredin 1958 usingchromiumsteelplatesof area1 cm
2. At a separationof

about0.5 p., the force of attractionwas 0.2 dyne/cm2,in agreementwith (6.25). It almost makesone

L

Fig. 6.4. Casimireffectfor a slabof two conductingplatesat a distanceL with a cross-sectionalareaA.
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believein the ether! Although, the attractiveforce may be explainedeventuallyin termsof the long
rangevander Waalsforcesbetweenthe moleculesof the two plates.

The presenceof a sphericalconductingshell in spacewill alsochangethe zero-pointenergyof the
electromagneticfield in the universe.The finite and measurablepart of this energyfor a spherewith
radiusa is

E0 = — ë(hc/2a), (6.26)

where ê is a number. Casimir conjecturedthat the inward force from (6.26) balancesthe outward
Coulombforce in the semi-classicalAbraham—Lorentzmodel of the electronas chargedistributed
overa sphericalshell.

Specifically, the electrostaticenergyof the chargeis associatedwith the stresses

e
2

Fest = oi~a

whereas the Poincaré stressesare provided by the quantum zero-point forces arising from the
presenceof the conductingboundary:

- hc
~ = — c

Thus,the conditionfor balancingthe stressesis

e2 - hc
c—a,8ira 8ITa

or

e2/hc= E. (6.27)

Therefore,at a particularvalueof the chargee, the extendedelectronshouldbe stableindependent
of the radius a. Casimir conjecturedthat the zero-point energy might -be the basis for charge
quantizationaccordingto (6.27).

Unfortunately,the ideafails, sincethe number~ as calculatedin 1968 by Boyer is negative,

= —0.093,

so that the force generatedby the zero-pointenergyon the surfaceof the sphereis outward.
Let us turn now to the bag. In adiabaticapproximation,for a fixed bag shape,thereis always a

geometricalzero-pointenergyfrom the quantumfluctuationsof the confinedfields. Sincethereareno
dynamicaldegreesof freedomoutside the bag, the divergentpart of the zero-pointenergywhich is
analogousto the first two termsof (6.24) is not “cancelled”by the outsidefluctuations,not converting
it into ageometry-independentandtherebyignorableinfinity.

Indeed,Balian and Bloch have shown the following theorem.Let us consider the Helmholtz
equation

A
4 + k

2ço 0

for a volume V of arbitraryshape,andfor the generalboundarycondition

(ac/an)= KcO (6.28)
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on the surfaceS. assumedto be smooth.Then, in the limit of wave-lengthssmall comparedto any
characteristicdimensionof the system,the eigenvaluedensity,smoothedto eliminate its fluctuating
part, is given by the asymptoticexpansion:

~ - .}, (6.29)

whereR1 and R2 are the main curvatureradii of S, with

—l5=—tan K.
K

Both the surface and curvature terms dependon the boundary condition (6.28). Neumann and
Dirichlet boundaryconditionsarerecoveredfor K = 0 and ic —* ~. A similar theoremcanbe derivedfor
vector and spinorfields in which casethe surfaceterm of the asymptoticexpansionmaybe missing.

From the eigenvaluedensity p(k) of (6.29) we can isolatethe divergentparts of the zero-point
energy~ for the scalarfield ~ as beingproportionalto the integral

f kp(k) dk. (6.30)

There is aquartic divergenceproportionalto the volume V, a cubic term proportionalto the surface
areaS, and a quadraticdivergencerelatedto the integratedmeancurvatureof the surface.

Benderand Hayshaveevaluatedthe zero-pointenergiesfor a staticand sphericalbagof radiusp,
in the caseof scalar,vector,andfermionfields with thecorrespondinglinear boundaryconditionsfor
abagsurface.Their resultsyield a similar pictureas expectedfrom the abovetheoremof Balian and
Bloch. The new elementin their calculationis the explicit proof that for spinorandvector fields with
linear bagboundaryconditionsthe secondterm in (6.29) vanishes.

The leading quartic divergenceof (6.30) may be absorbedinto the volume part of the bag
Hamiltonian by the renormalizationof the vacuumpressureB. Similarly, the cubicdivergencefor a
scalarfield maybe absorbedinto the surfacepart of the bagHamiltonianby therenormalizationof a-.
However,the quadraticdivergencein (6.30) is a new term which requiresa new counterterm

W.,, = — ~y f RVdetg0~dx°dx
2dx3 (6.31)

x1-~=i

in the action integral. W~is written in curvilinear coordinatesin eq. (6.31) where R is the mean
curvaturein Minkowski spaceof the intrinsic geometryon the three-dimensionalsurfaceof the tube
sweptout by the bagboundary.

The remainingfinite part of the zero-pointenergyis determinedby the long wavelengthpart of the
eigenvaluespectrum which may generatea geometry-dependentfinite potential term in the wave
equationof the collectivebagvariablesin adiabaticapproximation.

However,it remainsan openquestionwhat happenswith theproblem of the zero-pointfluctuations
of the confined fields in a more refined quantumtheoretic calculation beyond the adiabaticap-
proximation.
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7. Hadronspectroscopy,I (non-exotic states)

In this sectionwe shall describethe spectrumof hadronswhich are built from the minimum
allowed number of quark and gluon constituents.These are frequently called non-exotic states.
Accordingly, the gluonium with two or three valence gluons as the only constituentsis also a
non-exotichadronstate.

7.1. Staticbagapproximationwith quark—gluoninteraction(non-exoticlight baryonsand mesons)

The quark bag model will be treated here in the spirit of the adiabatic approximation (see
subsection6.3) but in addition to quarks, the quark—gluoninteraction will also be includedin the
calculations.

Let us considera bag with static, sphericalboundarywhose interior is populatedwith quark
orbitals (or gluonconstituentsin gluonium)wherethe quark—gluon-interactionis takeninto accountin
lowest order of a~.The static equilibrium of the bag is calculatedfrom the total energywhich is
minimizedwith respectto the bagradiusp. The spectrumof hadronsderivedfrom this calculationa!
schemeis associatedwith the so-calledM.I.T. cavity approximation.

Since the boundaryof the bag is treatedhere classically,as a static surface,confinementof the
quark and gluon fields by surfacetensionor vacuumpressureyields practically the sameresults.
Thereforewe shall follow the original calculationof the M.I.T. group with pure vacuumpressure.

Quark—gluoninteraction
In lowest order of a~the gluon exchangegraphsare shownin fig. 7.1. Since the quarksremainin

the lowest cavity mode in fig. 7.1(a), the currentat the verticesis time-independent.Consequently,
only the staticpart of the gluon propagatorcontributesin fig. 7.1(a).

To lowestorder in a~the non-Abeliangluon self-couplingdoesnot contributeandthe gluonsactas
eight independentAbelian fields without self-interaction.The problem of finding the confinedgluon
propagatorreducesto color electrodynamicsinsidea cavity of radiusp, with the boundaryconditions

(7.1)

,2xB~=0, i=1,2....,8 (7.2)

on the surface.From the solutionof the Maxwell equationsin polar coordinatesfor a pure radiation
field inside the cavity we can determinethe TE and TM eigenmodesof the coloredgluons, if the
boundaryconditions (7.1) and (7.2) are takeninto account.The confined gluon propagatorcan be
constructedfrom theseeigenmodesin the usualmanner.

In the self-energydiagramsof fig. 7.1(b) the intermediatequarkmaybe in anycavity mode.A large
(divergent)part of its contributionmust be absorbedinto the renormalizationof the quark mass.In
the cavity approximationaconventionalprocedureto treatthis diagramwould beas follows.

(a) (b)
Fig. 7.1. Lowestordergluon interactiondiagramsfor a baryon.(a) Gluon exchange;(b) gluon self-energy.



146 P. Hasenfratz and J. Kuti, The quark bag model

In QED the contributionof the self-energygraph is fixed to be zerofor the free electronby mass
renormalization.Then the relativeenergyshift for a boundelectronis finite and calculable.In the bag
model, wherethe “bare” quarkmassis definedas the massparameterof the free Dirac equationfor
the quarkorbitals of subsection6.3, we mayfix the contributionof the self-energygraphfor aquark
orbital in the nucleon’sground statein an arbitrarymanner.Then, in the differenthadronstates,the
relativeenergyshifts arecalculable.

The sourceof this relativecontributionis twofold. In general,the quarkwave functionwill change
from hadron to hadron for a fixed radius p (Lamb shift type correction),on the other hand the
confinedgluon propagatorwill alsochangewith adifferentcavity radiusp.

The M.I.T. group suggesteda different procedure.In their approximation the sum over the
intermediatequark statesis truncatedand only the term in which the quark remainsin the lowest
modeis considered.The gluon propagatorin fig. 7.1(b) will be againthe staticpropagatorin this case.

We do not see any reasonableargumentfor the truncationof the intermediatesum in fig. 7.1(b),
exceptperhapsthe insistenceon analyticcalculations.Sincethe electrostaticparts of diagrams7.1(a)
and7.1(b) cancel,we would get the inconceivableresult that thereis no electrostaticcontributionto
the groundstateenergyof apositroniumconfinedto acavity, if the M.I.T. procedureis applied.

This is probablywrong for massivequarks,thoughthe situationis lessclearwhen the quarkmass
vanishes.Chodosand Thorn have shownthat the electromagneticself-energydiagram is finite for
masslessquarksconfinedto a slab(zeromassparameterin the free Diracequation),andthe staticpart
of the diagram dominatesthe energyshift. If this feature of their calculationremainsvalid for a
confined gluon propagatorand sphericalcavity insteadof a free photonpropagatoranda slab, then
the M.I.T. approximationbecomesbetter motivatedfor masslessquarks.Since a non-vanishingmass
parameterin the free Dirac equationis a new and arbitrary dimensionalparameter,the resultsof
ChodosandThornarenot applicablein this case.

Though the approximationsseemto be crude,andnot well motivated,the calculationof the M.I.T.
groupis ratherinstructivefor two reasons.First, it givesazerothorder insightinto themechanismof
spin-dependentquark—gluon interactionwith spectroscopicapplicationsand further, a definite pro-
gramis provokedfor later refinements.

Let us calculate now the field energy of the quark—gluon interaction. The color electrostatic
interactionenergyof a static color chargedistributionis

AEE=~g2~f d3rE
1(r)E7(r),

bag

whereasthe color magnetostaticinteractionenergymaybe written as

AEM=—~g
2~J d3rB

1fr)B1(r),
bag

where E1 and B, are determinedfrom the quark charge and current distributions by Maxwell’s
equationandthe boundaryconditions(7.1) and(7.2).

The color magneticfield satisfies

VXB~=j~, r<p

VB~=0, r<p

r=p
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where~ is the color currentof the kth quark on agiven orbit:

.(k) — ±(k) ! (k) (k) — 3 (k)! (k) /-Lk(r)
j, —q a2A, q ——~-—rXg 2A, —i---.

Here ~ik(r) is the scalarmagnetizationdensityof a quark of massm,, in the lowestcavity eigenstate.
The integral

~(mk,p)=Jdr,~k(r)

yields the color magneticmomentgeneratedby the quarkwave functionin the cavity eigenmode.
It is easyto showthat the staticB~field of fig. 7.1(a)satisfiesthe boundarycondition(7.2) by itself.

With this observation,the M.I.T. groupleavesout the staticcontributionof fig. 7.1(b) to B~so that the
magneticinteractionenergyof a hadronis written as

~J d
3rB~(r)B~°(r),

I k>l
bag

whereB~is the color magneticfield generatedby the kth quarkof the hadron.
The final expressionfor the magneticinteractionenergyis

AEM = 2a~A~ ((k) ~(1)) p.(ma,p)p.(m,,~ I(m,,p, m,p), (7.3)
IC>, p

where

p
C dr

I(mkp, m,p) = 1 + 2 j —~ p.(mk,p)p.(m,,p).

In eq. (7.3) A = 1 for abaryon,2 for ameson.
We turn now to the gluon electrostaticenergy.Here the static term from fig. 7.1(b) is includedin

the calculationof the color electric field E,:

AEE = ~g2~ ~ J d3rE~(r)E~°(r). (7.4)
bag

The color electric field of a single quarksatisfiesin lowestorderof a~

= jO/k) r < p

VXE~=0, r<p

with the boundarycondition

r=p.

jO(k)(r) is the color chargedensityof asingle quark in agiven orbital:

i (k)
-0(k) — +(k)1 (Ii) (k) — ~A, (k)
j, —q -

2A, q —~---~p(r).
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The color electric field is determinedfrom Gauss’slaw:

! (k)

= L..L~~p(k)(r)

wherep~(r)is the integral

p(k)(r) = Jdr’p~~(r’).

Now if all the quarksare masslessin ahadronor moregenerally,they havethe samemass,then
p(k)(r) is independentof the index k andthe total color electric field is givenby

= —~--7p(r)~
k

For a color-singlethadron~k ~Ack)IH) = 0 so that E1 vanishes.Therefore,thereis no colorelectrostatic
energyshift in this case.For different quark massesthe term (7.4) is non-zero and includedin the
spectroscopiccalculation.

Zero-pointenergy
We have seenin subsection6.4 that the zero-pointfluctuationsof the quarkand gluon fields may

generatea finite zero-pointenergywhich should be of the form of

E~0=—Zo/p (7.5)

for masslessquarks, on the basis of dimensionalreasons.The term (7.5) is not firmly grounded
theoretically,rather it seemsto be a phenomenologicalterm for ill-understoodeffects in fitting the
data.

Hadron massesand otherparameters
We havenow all the necessaryingredientsfor calculating the massof eachhadron.For a given

radiusp of the sphericalbag,the total energyis given by

Eh(p) = E8 + Eq + Eq_g — E~0, (7.6)

wherethe interactionenergyEq_g andthe zero-pointenergy~ werediscussedabove.The energyEq

of the quark eigenmodeswas calculatedin subsection6.3 for masslessquarks. A similar procedure
appliesfor massivequarksas well. The volume energyEB is well-known by now.

The minimization of Eh in (7.6) with respectto the bag radius p yields the rest mass of the
correspondinghadronin the staticbagapproximation.

There are four parametersavailableto fit the low-lying mesonandbaryonspectrum:the vacuum
pressureB, the quark—gluoncouplingconstanta~,the coefficient Z0 in the zero-pointenergyof (7.5),
andthe strangequarkmassm0. The up anddown quarksare keptmasslessin the fit, thoughrelaxing
this conditiondoesnot alter the resultsnoticeably.

The spectrumfrom the bestM.I.T. fit is shownin fig. 7.2. We hopeto attributetheabnormallylarge
valueof a~to the abovediscussedroughapproximations.The qualitativepictureis quite encouraging,
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EXPERINENT
— BAG MODEL
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Fig. 7.2. The L~.I.T.fit to thehadron masseswherethe non-strangequarks areassumedto be massless.The experimentalvaluesare given by
dotted linesfor comparison.Therearefour parametersB, a,, Z0andm, (strangequark mass)to fit. Themassesof theN, A,w, and0 were usedto
determinetheparameters.

andthereis enoughmotivation,we believe, for furtherand moreelaboratework in this approachto
the spectrumof light hadrons.

Therelativemagneticmomentsof baryonsas determinedfrom the bestfit of fig. 7.2 is given in the
following table:

Magneticmoment~
Hadron

Experimental Bagmodel

n —0.69 —~

A —0.24±0.02 —0.255
0.93±0.16 0.97
— 0.31

—0.53±0.13 —0.36
—0.56

—0.69±0.27 —0.23

The bag model is lessaccuratein the static approximationon the over-all normalization of the
octetmagneticmoments.In subsection6.3 we found 2M~p.~= 2.6 for the gyromagneticratio of the
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proton(experimentis 2.79).Theinclusionof the quark—gluoninteractionin this sectionleadsto alarger
valuefor B thanin subsection6.3,andaconsequentlysmallerprotonradius.This resultsin a somewhat
too smallgyromagneticratio for the proton: 2M~p.~= 1.9 from the fit of fig. 7.2.

Thethreebest-knownchargeradii of thefour-parameterfit to thespectrumaregivenin thenexttable in
comparisonwith the experimentaldata:

Chargeradii (r2)”2

Hadron Experimental Bagmodel

p 0.88± 0.03fm 0.73fm
n —0.12±0.Olfm 0

0.78±0.IOfm 0.Sfm

Given the ratherrough assumptionsin certainstagesof the abovecalculations,we feel restrained
to commentupon the detailsof the fit in fig. 7.2, and upon the “goodness”of the various static
parametersof mesonsandbaryonsin the staticbagapproximation.Only furtherhard work candecide
whetherwe areon the right trackin hadronphenomenology.

7.2. Charmonium

We shall study here a simple approachto bound statesof heavy charmedquarks in adiabatic
approximation.The charmedquarksare treatednon-relativistically in their motion, whereasgluons
and light quarks,together with the bag surface,may be handledin the future in the spirit of the
Born—Oppenheimerapproximation.With further simplification, the interaction betweena charmed
quarkandantiquarkwill be describedby anon-relativisticpotentialV(r) in the Schrödingerequation
of the reducedproblem.

The charmoniumboundstatein Born—Oppenheimerapproximationis roughly like a quarkmolecule
whose heavy charmedquarks are associatedwith the heavy nuclei in molecules. The surface
variables,transversegluons, andlight quarksaretreatedas the light electronsin moleculesas it was
discussedin subsection6.2.

The level separationfor quarkexcitationsin the charmoniumis approximately

AEq = 5-600MeV.

We can estimatethe level separationof gluon and surfaceexcitationsfrom the quantizationof the
color-electricvortexof subsection5.3. The effectivemassof the confinedgluons(gluonexcitations)is
about

~ ir/R 1 GeV

with a classicalradiusR = 0.5 fermi for the vortex.The energyof string-like excitationsis

A string 171(r) 1 GeV,

where(r) is the averagelengthof the elongatedcharmoniummolecule.
This qualitativeestimateshowsthat the periodsof gluonic or surfaceexcitationsare not much

shorterthanheavy quark periods,so that the adiabaticapproximationis a ratherrough one here.
Nevertheless,it gives aqualitativeinsight into the physicalproblem.
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We imagine a pair of staticsourceswhich are coupledto the baggednon-Abeliangaugefield A,,,.
The positionvectorsr, andr2 of the staticsourcesareparametersin the staticHamiltonian H5~(r,,r2)
whose dynamical variablesinclude the gauge field, the ordinary light quarks,and the “collective
variables”of the bag.

Now, we assumethat for slowly moving charmedquarkswhenthe c-quarkis at r, andthe ë-quark
is at r2 the staticHamiltonian is still applicable,if the non-relativistickinetic energyof the ce-pairis
added.Physically we assumethat the bag can instantaneouslyreadjustitself to the slowly moving,
point-like ce-pair.

In a furtherapproximationwe shall ignore the gluon andlight quarkdegreesof freedom,together
with the quantumenergyof the surfacewhich is treatedclassically.The HamiltonianH5~becomesthe
potentialenergy V(r) of the static sourceswhichwas calculatedin subsection3.3:

1155(r,,r2) = V(r), r = (r, — r21.

After this drasticreductionof the problemwe haveto solve the Schrodingerequation

— ~— V
2~(r)+ V(r)~r(r)= E~/i(r),

where r standsfor the relativethree-vectorof the cC-pair,and m is the reducedmass.The potential
energy V(r), as shownin fig. 3.2, is well approximatedby

V(r)= —~a~/r+Ar, (7.7)

where A = 1 GeV/fermi, and a,, = 0.15. The factor~ in (7.7) takesinto accountthe fact that a color
singlet charmoniumstate is an equal superpositionof red—green, yellow—violet, and blue—orange
ce-pairs as it was shownin subsection3.3.

Someauthorshaveuseda similarpotential to V(r) of eq. (7.7). We arecloseto their resultsin our
calculation of the charmoniumspectrumas shown in fig. 7.3, if m = ~m,,= 0.8GeV is put in the
Schrödingerequation.

The spin-dependenceof the cC interactionenergyis a very interestingproblemin the bagmodel.
The force betweena color charge and the bag surfaceis always repulsive, classically. A color
magneticmoment,however,exerts an attractive force on the surfaceas dictatedby the boundary
condition ii x B = 0.

The attractiveforce is understandable,if we note that the outsidevacuumphaseactsas a perfectly

Mass [0ev]
3.7

35 — =

3:

3.1
jPC

f S
1’- 1--

2’~1”~00’

Fig. 7.3. Thecharmoniumspectrumin thequarkbag model.
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Fig. 7.4. The fairly strongspin-splittingof theorthoand paracharmoniumstatesmight be associatedwith the interactionof color spin with the
magneticsurfacechargepolarization.

permeablecolor-magneticmaterial with “polarization charge” on the boundaryof the two phases
when a color inductionfield B is present(fig. 7.4).

The net color-magneticmomentof a spin singletstatepulls in the surfaceof the bagreducingthe
energyof the system,as shownin fig. 7.4. This mechanismmayexplain theratherstrongspin-splitting
of the i/i and~,, in the charmoniumspectrum.

String limit
We have seen in subsection3.3 that for a quark—antiquarkpair fixed at large separationan

approximate,cylindrical vortex solutionappears.The energyper unit length in the vortex is

A = ~(4iru
2g2)”3, (7.8)

with the radius

R = AI3ITa-.

The volume energyis setto zerohere,with B = 0.
When the internal structureof the vortex is excited (subsection5.4), the mass scaleof confined

gluonsis setby iriR. In the weakcoupling limit, whereA is kept fixed andg -÷0,the vortex shrinks
and becomesvery thin, R -÷0ultimately. The excitation spectrumof massivegluons goesto infinity
then,andonly string-like oscillationsarepossibleat finite energies.

The picture is similar when the point quarksarenot held fixed at the endpointsof the vortex.The
massiveexcitationsbecomefrozen in, if the weak coupling limit is taken,and the elongatedbag is
describedby the dynamicalvariablesof a string whosetwo endsareloadedwith massivequarks.

In curvilinear coordinatesx”, the quark and antiquark are connectedinside the bag by the
coordinateline x3 as shownin fig. 7.5. This is the string.The two-dimensionalsurfacesweptout by the

.Y2

Fig. 7.5. The parametrizationof thestring-likebag.
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string is describedby

= fA(xO x3),

wherex3 E [0, IT] betweenthe q~-pair.The world lines of the quarkandantiquarkarerepresentedby

fA(xO 0), andf’~(x0,IT) respectively.

The interior of the elongatedbagis parametrizedby generalcylindrical coordinates

yA(x) = f’(xo, x3) + (cosx2~+ sinx2~”)x’p(x°,x2, x3), (7.9)

where e(x°,x3) and nA(xo, x3) are space-likeandorthogonalunit vectorsat eachpoint along the
string. They are orthogonalto the surface swept out by the string in Minkowski space. x’ = 1
describesthe surfaceof the bagin (7.9).

It can be shownthat the string-like motions of the thin, elongatedbag may be characterizedby
fA(xO x3) alone. We take p(x°,x2,x3) -~ R, approximately,and the gauge field inside the bag is
approximatedby

F~~A(y)= — -%~A ‘f~f~’— f~f~’) (7.10)

in the weakcoupling limit. A is definedby

A — ritA: ~2 LA: tAt ~1/2
— 1~.J.01 A,3! ~1 .01 A.0J .3J A,3J

For simplicity, an Abelian gluon field is takenin (7.10). The Ansatz (7.10) satisfiesthe Maxwell
equationsin theinterior forarbitraryf lt(xO , x3). The linearboundaryconditionn,,,F” = 0 isalsosatisfied.
When~ and the associatedfour-potentialA,, are substitutedinto the action W of eq. (5. l4b) for
arbitraryfA(xO x3), we find

Wgauge= — ~ f d~xJF,,~F’~= 2irR2fdx°dx3A
bag

Wsurf = ~a- f M dx°dx2dx3= _~~fdx0dx3A,
x1=1

Wg_qq = — J d~xJj”A,.= —j~f dx°dx3A.
bag

Thusthe action W of eq. (5.14b)becomes

W = — A f dx°dx3A — mf Vf”~
0(x°,0)fA,O(x°,0) dx°— mJ\/f~(x°,IT)f A.O(X, ir) dx°. (7.11)

The first integral in (7.11) is proportionalto the surfaceareasweptout by the string in Minkowski
space,with the proportionality factor —A. Therefore,the action in (7.11) describesa string loaded
with two point particlesof massm at theendpoints.The vortex energyA per unit length is identified
as

A = (2ira’(O))’ (7.12)
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in the string model. It is remarkablethat A = 1 GeV/fermi from the charmoniumfit is close to the
universalReggeslope a’(O) = 0.9GeV2 in the string model.

The aboveconsiderationsmaybe extendedto the non-Abelianmodel.

7.3. Hadronic deformationenergywith masslessquarks

We have seenin the previous subsectionthat the charmonium molecule with heavy charmed
quarkshasa deformedcigar-like shapein the bag model as dictatedby the bag equationsand the
non-sphericalpressureof the color-electricfield exertedon the bag’s surface.

Now we are interestedin the other extremeof hadronicdeformationswheremasslessquarksare
put on bag orbitals in the spirit of subsection7.1. We have seenin subsection1.4 that a heavy
nucleusmay becomedeformed due to the non-sphericalpressureexertedon the surfaceof the
nucleusby valencenucleons(light particles comparedwith the nucleusbag) in non-zero angular
momentumstates.Similarly, the hadronbagbecomesdistortedfrom asphericalshape,if the pressure
of the light constituentsis non-sphericalin ground state,or a centrifugal force is presentin large
orbital angularmomentumstates.

RecentlyDeTar madean interestingattempt to calculatethe hadronicdeformationenergyin the
bagmodel with masslessquarks. His calculationis a usefulintroductionto the string-like excitations
of light hadronsin the nextsubsection.

Following DeTar we shall describehere his constrainedvariational method which permits the
calculationof the energyas a functionof acollective variable8. The bagcavity is permittednow to
assumewhatevershapeis necessaryin order to minimizethe energyfor agiven expectationvalueof
the collective variable. Pure volume tensionwill be applied for quark confinementand the surface
remainsclassicalthroughoutthe calculations.The method is appliedto a bagcontainingoneq4 pair
andthe energyas afunctionof the separationof the quarksis evaluated.

Considera three-parameterazimuthallysymmetricsurface,definedin cylindrical coordinatesz, p, c
by the expressionfor p as afunctionof z,

p2 = n2(1 — (z2/d2))(l+ a(z2/d2))= q2(z), (7.13)

wheren is the cylindrical radiusat z = 0, d is the lengthof extensionin z and

a = 0 ellipse

— 1 <a <0 distortedellipse-bulgein middle

O< a < 1 distortedellipse-flattenedin middle

1 <a peanutshape

a—*cz,n-÷0 fission

—oo<a<—1 twobags.

A considerablelargeclassof shapescanbe studiedwith suchaparametrization.
The quarkorbitals for the baggeometryof (7.13)are describedby the trial function

q = [io.S~U]’ (7.14)
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where U is a two-componentPauli spinorand

c = ~(z) + a(z)R2,

s =~VR; A IVRIp.q(z),

R2= R~+ p2 — q2(z),

= max q2(z).

The vectors is constructedso that it is theunit normal to thesurfacewhenevaluatedthere(p = q(z)).
The trial state(7.14) satisfiesthe linear boundarycondition (4.1) explicitly.

The functionc dependson two functionsof z, which areparametrizedby

/3~l’ asc, (7.15)

and

13A = tanh(~z/d), aA = c tanh(~z/d) (7.16)

for symmetricand antisymmetricstates,respectively.The separationof the quarksis achievedin the
calculationby constrainingthe orbitals to separateinto a left orbital andright orbital while preserving
the spatialsymmetryof the total wave function:

i/i(l, 2) = h/1L(1)~R(2)+ ~~(1)çbL(2).

Expressingtheleft and right orbitals in termsof orthogonalsymmetricandantisymmetricorbitals,we

have
1/~L*S~*A; ~R/.’S+M~A,

çls(l, 2) = i/i~(l)çfr~(2)— 2~(1)~,(2)

with the mixing parameter~2 rangingfrom 0 to I for maximalto minimal overlapbetweenSS and AA
orbitals. The mixing parameter~ is determinedvariationally by minimizing the Hamiltonian for
spontaneousdeformationsof the bag. ~s and*A areconstructedfrom the trial function (7.14)with the
helpof (7.15) and(7.16) respectively.

The quark—gluoninteractionenergywas calculatedto secondorder in the coupling constantg by
evaluatingthe diagramsof fig. 7.1(a)and fig. 7.1(b) for the baggeometryof (7.13) wherea variational
expressionwas introducedfor the color-electricand color-magneticfields. For the self-energygraph
the truncation discussedin 7.1 has been applied. DeTar has also investigatedthe responseof the
systemto the forced separationof the quark orbitals.The constraintof quarkseparationis imposed
directly on the quarkwavefunction. It can be shownthat the parameter8,

= 2p~(1+,a2)f IfrS(r)~I.’A(r)zd2r (7.17)

measuresthe averageseparationof left andright orbitals.Theconstraintis implementedby addingto
the variationalHamiltonian the term S with a Lagrangemultiplicator.

The zero-pointenergiesof the fields areignored.
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Preliminary results
For a sphericalcavity without constraint the variational calculationreasonablyreproducesthe

resultsof subsection7.1, if the sameassumptionsareincorporated.
When the shape of the p mesonis permittedto deviate from a sphericalshape,the energy is

reduced.A slightly deformed p mesonis expected,since the color-magneticdipole field exerts a
non-uniformpressureon the bagsurface.The deviationfrom sphericity is prolate for the statewith
spin projection 1m51 = 1 onto the axis of deformationand oblate for the statewith spin projection
m~= 0. With the zero-pointenergyomittedand gluon couplinga,, = 2, the ratio of the polar radiusto
equatorialradiusis 1.11 for the p mesonwith m51 = 1. The reductionin energyis lessthan 1%.

For the calculationof deformedstateswith constraintthe deformationenergyis shown in fig. 7.6as
a function of the expectationvalue of the separationparameterS of (7.15) for two values of the
quark—gluoncouplingconstant,a = 2 anda = 0. The energyis givenin units of B”

4 andthe separation
S is shownin units of B”4. The fit of fig. 7.2 to the light hadronsgivesB”4= 145 MeV or B”4= 1.3
fermi.

In the presenceof color-electricfield the energyis approximatelylinear at large separations.The
slope at large separationagreeswith the result for a cylindrical tube. The slope in the cylindrical
approximationis

dE/d~5= V4ir ~a,,= 5.8, (7.18)
4. - . . .

wherethe factor~is includedfor color. The valuefrom the variational calculationis 6. The radiusof
the cylindrical vortex with color

4/4
R v

5ajirO.81.
The valueobtainedin DeTar’s calculationis between0.8 and0.83. Figure 7.7 showsthe shapesof the
deformedhadroncorrespondingto the variouspointsindicatedin fig. 7.6.

The color-electric and magneticenergiesare shown in fig. 7.8. The color-electric field energy
dominatesover the color-magneticenergyat large separation.The slope of the color-electric field

25 Energy of the q~Bag /
Quark Separation

20/

Fig.7.6. Totalenergyof thebag in unitsof B”
4 146MeV asa function of theaverageseparationof thequark orbitals5 in units of B”4 for two

valuesof thequark—gluoncouplingconstant.The shapeof thebagat points A, B and C is shownin fig. 7.7.
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Fig.7.8. Contributionto thetotalbagenergyfrom thecolorelectricand
Fig.7.7. Shapeof onequadrantof thebagin longitudinalsectionatthe color magnetic field in units of B”

4 as a function of the average
threepointsA, B and C of fig. 7.6. The z-axis is the symmetryaxis. separationS of thequark orbitals.

energy WE asymptoticallyis aboutone-halfof the slope (7.18), in accordancewith the expectation
that the ratio of field energyto volume energyis 1: 1 in a cylindrical vortex with purevolume tension.

In DeTar’s calculationthebagis keptstretchedby the constraintfor the orbital separation8. For a
spinningbag the centrifugal force separatesthe quark orbitals without further constraintput in by
hand.The elongatedandspinningbagbehavesthenas a “fat” string (seesubsection7.4).

When thequark—gluoninteractionis switchedoff anda,, = 0, it is expectedthat the quark—antiquark
bag could be pulled apart into two bagsof a single quark (or antiquark) each,becausethe gluons
which are essentialto ensure that the bag has zero triality are absent.Indeed, the variational
calculationshowsthe expectedresult.

The correspondingenergyas shownin fig. 7.6 risesa little andbecomesconstantabout10% higher
than the actual energyof two bags with one quark (or antiquark) each.The shapeof the bag with
a,, = 0 is shownin fig. 7.7 as the neckradiusshrinksto zeroindicating that it undergoesfission. DeTar
interpretsthe 10% energyaccessas the inadequacyof the variationalcalculationdueto the tear-drop
shapeof the two bagsatthe point of fission.

The variational methodis well-suitedfor the calculationof the nuclearpotentialand the structure
of the deuteronas a six-quarkbag.

7.4. String-likeexcitationsof hadrons

JohnsonandThornhavesuggestedthat string-like hadronsmaybe picturedas vorticesof color flux
lines which terminateon concentrationof color ~t the endpoints. A mesonwith one quarkand one
antiquarkwould havethe q at oneendand~ atthe other. A baryonwith threevalencequarkswould
be arrangedas a linear chainmoleculewherethe largestangularmomentumfor a stateof given mass
is expectedwhen two quarksareat one endand the third is at the other(fig. 7.9).

The color flux connectingoppositeendsis the samefor mesonsandbaryonsgiving an explanation
for the sameslopeof mesonandbaryontrajectories.

We shall constructnow the solution which yields maximal angularmomentumfor fixed mass.
Accordingly, let us considera bag with elongatedshaperotatingabout the centerof masswith an
angularfrequencyw (seefig. 7.9). It is assumedthat the endpoints movewith light velocity.
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Fig. 7.9. String-like excitationsof light mesonsandbaryonswith large orbital angularmomentum.

A given point inside the bag,at a distancex from the axis of rotation,moveswith a velocity

v = w x = 2x/L,

whereL is the length of the cigar-like bag.
In the presentcalculationthe bagsurfacewill be fixed by balancingthe gluon field pressureagainst

B, the confining vacuumpressure:
8 (E~— B~)= B. - (7.19)

The color-electricfield E, is determinedby Gauss’slaw,

E, . A = g~A,, (7.20)

whereA is the crosssectionof the bagat a point wherethe meanfield strengthassociatedwith the
color chargeg~A1is E1.

The color magneticfield B~associatedwith the rotationof the color electric field is given by

B~=vXE1 (7.21)

at a point moving with velocity v. This field is consistentwith the linear boundaryconditionsin eq.
(3.9).

If E, from (7.20) and B1 from (7.21) areput in eq. (7.19), the crosssectionA canbe expressedas a
functionof the orbital velocity v:

ArrV/~gç~Vl_v2, (7.22)

wherewe haveusedthat (~.., (~A1)
2)= ~for a color triplet state.The cross sectionA in (7.22) shows

the expectedLorentzcontraction.
The total massM of the rotatingbagconsistsof threeterms,

M=Eq+Ef+BV, (7.23)

whereEq is the quarkenergy,Ef the gluon field energy,andBV is the volume energy.
The length L of the stretchedbagis determined,for a given value of the total angularmomentum

J, by the condition

oMh9L = 0. (7.24)

This is the conditionthat the angularmomentumbe a maximumfor fixed M.
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The differentpiecesof the total massM in (7.23) arethe following. The volume energyis

BV= BLJ dvA(v)= B - LV~)=J dvVI -

andthe energyof the coloredflux lines is
8 — — ‘ 1+v~

Ef=~Jd3r~(E~+B~)=\~gVBLJdvV1—v2~

Since we assumethat the valencequark wave functionsare localizednearthe ends,the total quark
energyEq ~5

Eq = (7.25)

for aconvectivequarkmomentump at the ends.The total angularmomentum

J = Jq + Jf

is the sumof the quarkand gluonfield angularmomenta.The angularmomentumof the color fields is

‘~ La~d3r~rEjxBj)~=\1L2gV~Jdv~
1t)2,

wnereasthe total quarkangularmomentumis givenby

JqPL.

With the calculatedingredientswe mayexpressthe totalmass M as a functionof L,

M = + \/~Lg\/~, (7.26)

for fixed total angularmomentumJ. From eqs. (7.24) and (7.26) we find an asymptoticallylinear
trajectory:

J =

with the slope

a’(O) = ~ (7.27)

The parametersB and a,, have been determinedin subsection7.1 as B = 55 MeV/fermi
3 and

a,, = 2.2. With thesevalues in (7.27) we find

a’(O) = 0.88(GeV)2

in very good agreementwith the experimentallydeterminedslope which is about 0.9GeV2. The
analogousrelation to (7.27) for confinementwith surfacetensionhasbeengiven in eq. (7.12) if A is
takenfrom (7.8).

The slopea’(O) in (7.27) hasbeencalculatedfor a statein whichthe coloredobjectsat the two ends
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belongto the 3 or ~ representationof color SU(3). If the expectationvalue of the Casimir operator
~., (~A,fis C in a given color representation,the formula for the slopemaybe written as

a’(O) = (32IT3a,,B)_h/2, (7.27a)

wherea’(O) reducesto (7.27)with C = ~ in color triplet representation.
We shall arguenow that (7.27) is equivalentto the dual string model formulafor the slope if the

“proper tension”alongthe string is associatedwith the properenergyper unit lengthof thecolor flux
andspatialextension.The properenergyperunit length is definedas the energyT0 per unit lengthat a
point in the bagevaluatedin the instantaneousrest systemof that point;

T0=~ E~A0+BA0=2BA0,

whereA0 is the crosssectionalareaof the bag.If we use(7.22) for A with v = 0, we find

T0 = 4V~\/~VB\/1r

for the proper tension.In the dual string model the slope and proper tension T0 are relatedby the
formula

T0 =

so the slope is

, 1 /3 1 1 1
a (0) = - - 3/2 ~

in agreementwith (7.27).
We shall discussnow some approximationsof the abovecalculations.The formula (7.25) for the

total quarkenergyassumesthat the energy—(1/VA) associatedwith the confinementof quarksmay
beignored in comparisonto the total energyof the system.

In this approximation the quark energy Eq = 2p is zero for the following reason.For a given
angular momentumJ the quark energy Eq can be expressed,with the help of the relation J =

pL+Jf, as

Eq2p2(~_ ~LgVB~dv~1L2), (7.28)

whereL is given by

aM 2.1 /2 —IT~=0=—~+~g B~. (7.29)

The quarkenergyEq in (7.28) is zero for the valueof L from (7.29).Therefore,ignoringcorrectionsof
the orderof I/VA, the total energyandangularmomentumof the elongatedbag is associatedwith the
color flux lines.The quarksatthe endsserveto terminatethe color flux, otherwisetheydo not govern
the dynamics.
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This picture of the leading Reggetrajectory is similar to the dual string model. However, the bag
dynamicsis associatedwith the color flux lines and the geometricalvariablesof the string merely
serve to parametrizethe motion of these fields. Further, since the cross section A in (7.22) is
independentof .1, the elongatedbag as a string is “fat”, with the transversedimensionof ordinary
hadrongroundstates.

The calculation presentedhereis expectedto be valid for an “asymptotic trajectory” with large
angularmomenta.The value of J shouldbe of the orderof five, or so. In that case

Eg~ue~ I/VA,

and the string energydominatesover quark energiesat the ends.The hope is that the asymptotic

calculationremainssensibleevenat lower valuesof the angularmomentum.

7.5. Gluonium

One of the most spectacularpredictionsof the quark bag model is the existenceof quarkless
gluonic hadrons.They are constructedin closeanalogywith the quark orbitals of subsection6.3 in the
spirit of the adiabaticapproximation.Gluons populatethen the eigenmodesof a sphericalbag of
radiusp, wherethe wave functionsof the valencegluon orbitals are subject to the linear boundary
conditions

n-E10, (7.30)

nXB1O, (7.31)

on the staticand sphericalsurface.
To lowest order in a,, the gluon self-couplingmay be ignored and the colored vector gluon fields

behaveas Abelian vector fields. They satisfy Maxwell’s equationsinside the staticbagsubject to the
boundaryconditions(7.30) and(7.31).

Similarly to sphericalcavity resonators,two types of statesarefound for eachvalue of the total
angularmomentumJ(J ~ I):

mode notation parity (fl)

transverseelectric TE
transversemagnetic TM

For eachvalueof J and H thereis an infinite sequenceof modeswith increasingnumberof radial
nodes.This featureof the spectrumis similar to the radial modesof quarkorbitals as determinedfrom
the eigenfrequencyequation(6.17). The analogousequationfor the eigenfrequenciesof gluonorbitals
yields the following lowestmodes:

mode frequency J” energy

TE 2.74 1~ 2.
74/p

TM 4.49 l ‘I.49/p
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Thesemodeswhenpopulatedwith gluonsmust form overall color singlets.Color singletstatesof
two gluons may be constructedwith 81k coupling, the chargeconjugationquantumnumber C is + 1
then.Color singletstatesof threegluonsmaybe constructedby d,k,(C= + 1) or f,kI(C = — 1) couplings.

The calculationof the massesfollows the methoddevelopedin section6. Since the gluon statesof
non-zerototal angularmomentumarenot sphericalat the semi-classicallevel, their massescannotbe
reliably estimatedin the staticbagapproximationto a sphericalshape.However,the predictionsfor
zero total angularmomentumof all-glue hadronsare on the samelevel of reliability as the mass
predictionsof subsection6.3.

The most interestingresult from the aboveconsiderationsof Jaffe and Johnsonis that the quark
bagmodelpredictsa new form of hadronicmatter— glueballs— in the 1—2 GeVenergyregion following
the sameapproximationprocedureswhich yielded a qualitatively acceptabledescriptionof ordinary
light mesonsandbaryons.The lowestmassesaregiven by

occupiedmodes jflC mass (MeV)

TE TE ()~~ 960
TETM 0 1290
TETETE 0~ 1460
TMTM 0~ 1590
TETETM l~ l640
TE TE 2~”~ 960

All statesareflavor andcolor singletsin the abovetable.The last two statesof the tablearenot well
describedin sphericalapproximation,theyareincludedfor later reference.

The high angular momentum excitations of glueballs becomeelongatedstring-like objects on
approximatelystraight-line Regge trajectories.This description is motivated by the discussionof
subsection7.4. Herewe only recallthat the slopeof the Reggetrajectoriesassociatedwith “fat” gluon
strings is givenby (7.27a),

= ~a’(0), (7.32)

where a’(O) = 0.9GeV2 is the slope of ordinary Regge trajectories.The factor ~ in (7.32) is a
consequenceof color octet chargeseparationat the endsof the string due to the centrifugal force
exertedon the gluons in large angularmomentumstates.Ordinaryelongatedhadronsas “fat” strings
carry a color triplet chargeatthe ends,hencethe different slopeof the trajectories.

If the pomeronwith an interceptof one is identified with a spinning-string of two gluons in color
singlet and flavor singlet state (see section 9), the slope a~,~~(O)= 0.6GeV2 from (7.32) predicts
1.3 GeV for themassof the first physicalstate(2~~)on thetrajectory.Somecurvaturein the pomeron
trajectory mayshift the mass1.3GeV upward.

The sphericalcavitystate2~in TE2 modewhose masswas given at960MeV in the glueball table
may become the 2~particle on the pomeron trajectory when the hadron deformationfrom the
non-sphericalpressureis includedin the calculations.

One finds motivationfor the existenceof all-glue hadronstatesoutsidethe quarkbagmodel,too.
Quantumchromodynamicsmakestheir existenceconceivable,whereasFreundandNambupredicted
this new form of hadronicmatter in the string model, in close associationwith the dual resonance
model. They identified the pomeronand its daughterswith closedquarklessstrings whose slope is
one-halfof the ordinaryslope a~om= ~a’.
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Fig. 7.10. The pomerontrajectory and its daughtersin thestring model. The pomeroninterceptis setto a
5(0)= I in anarbitrary manner.The

tensor,vector,andscalarglueballstatesareindicated.

The leading pomerontrajectory and somedaughtersof the closed string are shownin fig. 7.10
wherethe interceptof the pomeronis set to onearbitrarily.

Glueballphenomenology

One way to producequarklessstatesin anyof the abovementionedmodelsis to annihilatequarks
with antiquarks.Someauthorshaveexploredthe possibility thatwhen suchannihilationsoccur,as in
Zweig-rule violating mesondecays,the intermediatequarklessresonances(glueballs) dominatethe
dynamics.Unfortunately, the discussionsremainon the level of a gross form of phenomenology.
Nevertheless,we hope thata first qualitativeinsight into the problemmaybe useful and stimulating
for an experimentalsearch,andit mayleadto the constructionof a genuinetheoryof all-glue hadron
states.

Let usconsiderfirst the vectorglueballOs,, with quantumnumbersjflC = 1~.In the string model
O~is the lowest physical state on the first daughterof the pomerontrajectory. Its mass may be
estimatedfrom fig. 7.10 wherethe parallelandequidistanttrajectoriesyield the massm0~= 1.34GeV,
if a~,,~(O)= ~a’(O)is taken.

The lowestlying l~ statehasamassof 1640MeV in the glueball tableof the bagmodelwhich is
subject to modifications due to deformations by the non-sphericalpressure. If we accept the
trajectorystructurefor all-glue string-like bagswherethe pomeronhasinterceptoneandits daughters
are integerspacedbelow, the mass of the vector glueball should be mo~= 1.3GeV with the slope
a~ue(0)= 0.6GeV

2.
Giventhe uncertaintieswe expectthe massof the particle to be somewherebetween1.3GeV and

1.6GeV.
Recently Robson has suggestedthat the vector glueball might have already been found in a

DESY—Frascatiexperimentat 1.11 GeV. He arguesthat the main decay propertiesof the recent
DESY—Frascatiresonanceare certainlyconsistentwith a vector glueball, if the basicassumptionof
FreundandNambuis accepted:the only poles neededin the Zweig forbiddendecaysarethe 0.,,, ~,

and~fr,as shownin fig. 7.11 for somesequentialpolemodeldiagrams.
In the experimentthe reaction y + p-÷V0 + p, V0 -÷e~ewas studiedby the interferencebetween

the Comptonand Bethe—Heitler processesand a resonance-likestructureof mass 1110MeV was
found. The observedwidth was consistentwith the experimentalresolutionof 30 MeV and it was
parametrizedas aresonanceof width 20 MeV, andB.R. (do-/dt)I~o= 4.9X iO~~b GeV2, a factorof
twenty smallerthanfor cu production.
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(a) (b)

Fig. 7.11. Zweig-ruleviolating decaymodesof the4~and i/i mesonaregiven in (a). The correspondingstring picture for the s,b mesonis shownin
(b).

If one assumesthe SU(4) brokencouplingsof the 0.,, to the known vectormesons,

~ = f~ =__i__ ‘°“= —S (733)
mOV+m,k ~ V~mo~+m~

andmo~= 1.11 GeV, Fo~= 20 MeV are acceptedfor input, then

F(i/i—s-pir)= 1.6keV

is obtainedfrom the sequentialpole modelof fig. 7.11, only afactorof two aboveexperiment.This is
takenby Robsonas an encouragementfor ignoring the contributionof higher massvectorglueballsin
the sequentialpolemodel. Their inclusionwould not be an appealingpossibility,anyway.

Using the mass 1.11 GeV and eq. (7.33) as input, the width may also be predictedfrom the
sequentialpole modelof Freundand Nambu,togetherwith the following results

S= 0.032 GeV~,

-* K~K1= 0.12eV (9.8±9.8eV experimentally),
F(O~~pir)= 7.8 MeV.

[‘(0,,,-÷K~K1= 0.81 MeV I’ (0,,.—~K0K0),

F(O~-÷e’~e)= 85eV.

The dominantdecaymode is Ov—~pirevolving into a ir~ir ir° final state,and the decayinto two
kaonsis suppressed.

The tensorglueball °T as the lowest physical state on the pomerontrajectory, and the scalar
glueball O~as the second daughter are also expected in the mass region of 1.—1.5GeV. Their
phenomenologyis most interestingandgiven elsewhere.

8. Hadronspectroscopy,II (exotic states)

In thissectionwe shall briefly discussthe low-lying multiquarkhadrons,baryonium,andquark bag
star as the mostspectacularexotic objectswithin the frameworkof the quarkbagmodel.

8.1. Multiquark hadrons

The quarkbagmodelmay shedsomelight on theold problemof exotics.In this model the massof
a hadronincreasesroughly in proportion to the total numberof quarksinside the bag. This is due to
the fact that the quarkkinetic energydominatesthe total energyof the bag,about~of the massof a
typical hadronarisesfrom the motion of the quarks.



P. Hasenfratz and I. Kuti, The quark bag model 165

It has been known for a long time that the Coulomb-like color electric forces saturateinside
hadronssupporting rather strong evidenceagainst low-lying exotic states in quantum chromody-
namics.It meansthat there are no strong forcesbetweencolor singlet mesonsand baryonswhich
might be relatedto confinementstructure.With this argumenta low-lying qq44 state,say,would be
ratherlike alooselyboundmoleculewith color singletq~“atoms”, if sucha moleculemayexistat all.

RecentlyJaffe hascalled attentionto the presenceof color-magneticforces,however.Two color
singlet hadronssitting close to each other are not an eigenstateof the magneticgluon exchange
operatorof eq. (7.9). They canexchangea gluon becomingcolor octetsstill forming an over-all color
singlet state.This force mixes and splits multiquark states.

Since the spin splittings amongqqq baryonsand q4 mesons are a significant fraction of their
masses,it mayhappenthata multiquarkstateqq~or qqqq~maylose so much energyin color-spin
interactionthat it becomesbound,relativeto the decayinto normalq~or qqq hadrons.

Jaffeproceedsnow exactlyas we did in theq~andqqq sectorsin subsection7.1. Thereareno new
parametersor approximations.Howevermuchwe like this, the critical remarksof subsection7.1 are
alsocarriedoverherewithout new parameters,andthe shortcomingsmay hurt hereevenmorethan
for ordinaryhadrons.Nevertheless,Jaffe’scalculationis the first andvery interestinginsight into the
problemwith surprisingand encouragingresults.

Jaffe approximatesAEM by replacingm, by the averagequark mass of the state.AEM may be
rewrittenthenin termsof Casimir operatorsof colorSU(3),,, spin SU(2)andcolor-spinSU(6),,~,which
is the SU(6)generatedby SU(3),,xSU(2):

1 4 —.

AEM -— 8N+ ~C6(tot)— ~ + I) + C3(q)+ C3(q)
+~Sq(Sq+ 1) + ~Sq(Sq+ 1)— C’6(q) — C6(4) (8.1)

whereC3 andC6 arethe quadraticCasimiroperatorsof SU(3) andSU(6), respectively.We refer to the
SU(2) of S-wave J = ~ quarks from eqs. (6.15) and (6.16) loosely as spin. The 35 generatorsof
color-spinare

{a}={V~cr’;A”; o-”A”; k = 1,2,3;a = 1,2,... ,8}.

The Casimiroperatorsaredefinedby

8 Nq 2 35 Nq 2 3 Nq 2

C3(q) = ~ (~A~); C6(q) = ~ (~at’) ; 45q(Sq+1) = ~ (~o~’)
a1 i1 ~=I i1 k—I i—I

Now, the Casimir operatorsof color-spin dominate eq. (8.1), as Jaffe pointed out. They are
generallymuch larger than those of spin or color. For a given number of quarksand antiquarks
q. . - q~.. . ~ the lowestlying multiplet follows the rules:

1. The quarks and antiquarksare separatelycoupled to the largest allowed representationof
color-spin.

2. The color-spinCasimiroperatorof the systemincluding quarksandantiquarksis minimized.
On the basisof theserules it can be shownthat the groundstatesof qq~andqqqq~arenot exotic,

they are nonets.Therefore,they may be misclassifiedas conventionalq~or qqq states.The weight
diagramsandquarkcontentof thesemultipletsareshownin fig. 8.1.

The exotic statesturnout to be heavierin Jaffe’scalculation,far abovethe thresholdfor decaying
into (q~)(q~)or (qqq)(q4),so that theymustbe broadif resonantat all.

A moredetaileddiscussionaboutthe phenomenologicalaspectsof the multiquarkstatesin the bag
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Fig. 8.1. The quark contentof qqt~and qqqq~nonets:(a) for the lowestmesonnonet: (b) for the lowestbaryon fond.

model is found in Jaffe’s papers.We turn now to the very interestingproblem of high angular
momentumexcitationsof qq~states.

8.2. Baryonium

Thequarkbagmodelaccommodatesa family of mesonswhich are probablydominantlycoupledto
baryon—antibaryonchannels.Experimentalresults support the existenceof thesepeculiar mesons,
oftencharacterizedas statesof baryonium.

The baryoniumis picturedin the quarkbagmodelas a fat string-like spinningobjectwith a diquark
and anti-diquarkpair at the two ends.The dominantdecaymodeof the spinningstring is to createa
q4 pair in thecolor-electricfield of the elongatedbag,wherethe quarkjoins thediquark,theantiquark
joins the anti-diquarkand the string breaksinto a baryon—antibaryonpair.

We have seenin subsection7.4 that the slopesof Regge trajectoriesassociatedwith rotating
string-like objects in the quarkbagmodeldependon the color chargeseparationatthe two ends.The
slopeformula(7.27a)dependson the value C of the Casimiroperator.We mayhavecolor chargesin
triplet, sextet,or Octetrepresentationat the endsof the spinningbag.

The triplet separationoccursin the large angularmomentumexcitationsof ordinary mesonsor
baryons.Octet separationis characteristicof the excitationsof glueballs into spinningobjectswith
gluonsat the ends.In baryoniumthe diquarkqq maybe in color triplet or color sextetrepresentation.
The slopesof the correspondingtrajectoriesaregiven in the following table:

triplet sextet octet

4 15

slope a’(O) V~a’(0) ia’(O)
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Fig. 8.2. Thetwo leadingnatural-paritybaryoniumtrajectoriesproposedby G.F. Chew.

Therefore,we expectbaryoniumtraLectorieswith ordinaryslope a’(O) whenthe diquarkis in color
triplet representation,with a slope V~a’(0)in the sextetrepresentationof the diquark. The latter
statesare very difficult to excite from ordinary hadronssincethis 6—6 string canonly be producedin
higher order requiring an extragluon exchangein comparisonwith ordinaryprocesses.If, however,
suchastateis producedsomehow,it remainsquitestablesinceits decayis alsoof higher order in the
quark—gluoncoupling.

The quark bag model thereforepredictsthe existenceof extremelynarrow spinningstateswith
largeangularmomentumwhich predominantlydecayinto baryon—antibaryonchannels.

RecentlyChew suggestedthat two natural-paritytrajectories,with isospin degeneracyas well as
exchangedegeneracyare able to accountfor mostof the availableevidenceconcerningmesonstates
thatcommunicatepreferentiallywith baryon—antibaryonchannels.The two baryoniumtrajectoriesare
shown in fig. 8.2. They have ordinary slopes a’(O) correspondingto diquarks in color triplet
representation.

Further searchfor baryoniumstatesremainsone of the most exciting projects in hadron spec-
troscopy.

8.3. Quark bag star

There is a generalbelief that pulsarsare neutronstarscompressedto densitiesgreaterthan the
densityof atomic nuclei. We may guessthat when the density of matter is further increasedand
becomesso large that the meandistancebetweenquarksin differentbaryonsis muchless thanone
fermi the descriptionof matter as nucleonsinteractingvia potentialsdoesnot remain valid. A new
description of matter composedof quarks may become relevant then. It is conjecturedthat at
sufficiently high densitiesmatterwill behaveas arelativistic gasof free quarkswith p —~~p,wherep is
the pressureandp is the densityof matter.

We shallbring now somequalitativeargumentsthat the vacuumpressure(or surfacetension)in the
quarkbagmodel maybe largeenoughto compressthe neutronphaseof pulsarsinto quarkphase.

The normaldensityof nuclearmatteris

n0 = 0.16nucleon/fermi
3,
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or
14 3p0=2.4X10 g/cm.

In highly compressednuclearmatterexpertsestimatethe density to be about

p = 10’sg/cm
3,

and the correspondingpressurein neutronstarsmaybe about

p = 5 x l0~dynes/cm2.

Now we recall from subsection7.1 that a fit to the lowest mesonand baryonstatesyielded the
value B”4 = 146MeV as shownin fig. 7.2. This valueof the vacuumpressurein c.g.s.units is

B = 9.5 x 10~dynes/cm2,

so that the possibility for the formationof quarkbagstarsis there.
FollowingChaplin andNauenbergwe shall apply Gibbs’ criterionfor a phasetransitionto calculate

the densitywherethe baryonmatterchangesto quarkmatterat zerotemperature.At a fixed pressure
p andzerotemperaturethe stablephaseof matteris the onewhich hasthe lowestGibbsenergy

= (p + p)/n, (8.2)

where p is the energydensityand n is the conservedbaryon numberdensity. Equatingthe Gibbs
energyfor quarkmatterand for baryonmatterat the samepressure,

/-~baryon phase= /.L quarkphase (8.3)

determinesthenthe transitionpoint.
First, we calculatethe chemicalpotentialin the quarkphaseof matter.The groundstateof quark

matter inside a gigantic quarkbag starunder vacuumpressurefrom outsideis a fermi gas with all
color statesoccupiedfor eacheigenmodeup to the fermi level.

When the quarkmassesmaybe neglectedin comparisonwith the fermi energyof quarks,onecan
write for the energydensityp at zero temperature

p = An413 + B (8.4)

on dimensionalgrounds.HereA is a constantproportionalto hc, andn is the baryonnumberdensity
which is conservedevenwhenbaryonsdo not existany moreindividually.

The constantA was calculatedby Chaplin and Nauenbergto secondorder in the quark—gluon
couplingconstantg,

2 1/3 2

A = ~ (h-) (1 + ~_)hc. (8.5)

where K is the numberof quark flavors contributingto the energydensityp.
Fromeqs.(8.2), (8.4) and(8.5) wecanexpressthe chemicalpotential(Gibbsenergyper unit baryon

number)as a functionof the pressurep for zero temperature

= 4(~A)314(p+ B)”4.

From the condition (8.3) we maycalculatethe critical baryonenergydensitywherebaryonsbegin
to disappearand anew quarkphasedevelops.The following tableshowsthe critical baryondensityp,,
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in units of l0’~g/cm3in threedifferentmodelsof nuclearmatter at high densities

model p,

Pandharipande—Smith 2.7

Bethe—JohnsonI 6.5
Bethe—JohnsonII 13

In thesecalculationsthe valuesof subsection7.1 wereusedfor a,, andB.
From the table it turns out that the phasetransitionoccurs at baryonenergydensitieswhich are

10—50 times the baryonenergydensity in normalnuclei. Now ChaplinandNauenbergarguethat the
maximum allowed energydensityfor stablequarkstarsas derivedfrom generalrelativity is

Prnax 8.3B, B = (55 MeV/fermi3). (8.6)

The value of Pmax in (8.6) seemsto be smaller than p,, in the table by a factor of three to five.
Therefore the existenceof stablequark bag starsremainsunder question. Since we are in a very
sensitive energy region both in baryon phase and quark phase,the results are far from being
conclusivein eitherdirection.We seemto be on the borderline of being capableof determiningthe
possible existenceof this incredible object. There is certainly more to come in the theoretical
developmentof the quarkbag modeland nuclearmattercalculationsat extremedensitiesbeforethe
questionbecomessettledsatisfactorily.

9. High energyscatteringprocesses

In this sectionwe shall study the qualitativedescriptionof hadronic final statesassociatedwith
high energyprocesseswithin the framework of the quark bag model. It will be shownthat color
separationaboveone fermi is the governingmechanismto generatethe final state in high energy
collisions. This mechanismmay explain the great similarity of final statesin hadron—hadronand
lepton—hadronreactions,as well as in e~eannihilation. Scaling in deep inelastic lepton—nucleon
scatteringis discussedin subsection9.2.

9.1. Low’s modelof thebarepomeron

A remarkablefeatureof total hadroniccrosssectionsis that theyareapproximatelyconstantover a
broadenergyrange,between10 GeV and300 GeV laboratoryenergy.Low presentsan attractiveand
simplemodel for thebarepomeronwith sufficiently weakcoupling,so that the problemof rising cross
sectionsand the relatedlogarithmic energydependencemay be viewed as higher order corrections
(ignoredhere).

The constancyof the total cross sectionsis usually associatedwith the following experimental
observations:

1. Elastic crosssectionsarealso approximatelyconstantover the sameenergyrange,thoughthey
aremuch smallerthanthe correspondingtotal crosssections.The elastic amplitudesmainly appearas
the diffraction due to multi-particle productionprocesses.The elastic processesthemselvesareonly
secondarilyreflectedin the elasticamplitudes.
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2. Thereal parts of forwardscatteringamplitudesare small comparedto imaginaryparts. The real
part associatedvia dispersionrelationswith aconstantif

101 is zero, sothat its presenceis a measureof
the non-constancyof ~

3. There is adiffraction peakwhich is approximatelyGaussianin the momentumtransfer.
4. There is an approximatefactorizationof diffraction amplitudesandtotal crosssections.
5. Approximate factorizationand Feynmanscaling (or limiting fragmentation)are observedin

inclusiveprocesses.In the fragmentationregion of b the inclusive crosssectionfor a fragmentc is

E,, difab —

— Fb,,(tb,,,x,,),0ab U q,,

demonstratingthe independencefrom the projectile a. tb,, is the momentumtransferfrom b to c and
x = 1 — (M2/s) is Feynman’sscaling variablewith M the missing mass,and s the centerof mass
energysquared.

6. A universalplateauis observedin the centralregion in rapidity space.This plateauseemsto be
independentof the initial stateof the reactionin which it is created.

Low’s model to be describedin this subsectionseemsto accountqualitatively for all the above
mentionedobservations,togetherwith the constancyof o~,,,,.The only exceptionis factorizationwhich
is accidentalin the model.

Bags in interaction
Following Low we describe the collision processof two hadronsqualitatively as the specific

interactionof the associatedbagswith color gluon exchange.Let us considertwo bagsapproaching
eachotherin the c.m. systemwith adefinite impactparameterb as shownin fig. 9.1. We assumethe
sameradiusand massfor the two bags.In a classicalpicture with sharpbagboundariesthe bagswill
passeachother without interactionfor b > 2R. They cannotinteract,since the coloredvectorgluon
fields are confinedto the interior of the bags.In the quantumtheory the surfaceof the bagbecomes
fuzzy, but a well-definedmeaningis maintainedfor the impactparameterb.

When b <2R the two bagswill touch in somepoint, and evolvefor intermediatetimes as a fused
single bagin highly excitedstate.The mostprobableinteractionwhich mayoccur is the exchangeof a
soft coloredgluon betweenthe two partsof the intermediatebagrunningawaywith a relative velocity
2v — 2c. The two color singletparts becomecolor octetsdueto the exchangeof the soft gluon. Since
the color flux linesare confined,the intermediatebagstretchesand a color-electricvortex develops
betweenthe two color octetparts,as shown in fig. 9.2.

The overlapof the initial configurationwith the stretchedintermediatebagis negligible,so that the
lowest order real part of the elasticscatteringamplitudef(b) vanishes.Elasticscatteringrequiresthe
exchangeof two coloredgluonswhich is a higher orderprocessin a,,.

One notesthat a similar color-electricvortex developsin deepinelastic lepton—nucleonscattering
when a colored quark inside the nucleon receivesenormousmomentumtransfer by, say, a very

color oc~~ octet
Fig. 9.1. Two bags colliding in the center of mass frame with
impact parameterb. Fig. 9.2. The color-electricvortex tubeaftergluon exchange.
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energeticelectron.As a result, the kicked out quarkcarrying color chargeis running away from the
restof the nucleonapproximatelywith light velocity. Since the diquarkleft behindmustbe in color
triplet state,the bagstretchesandacolor-electricvortex appearsbetweenthe escapingquarkandthe
restof the nucleon.

In electron—positronannihilationat very largeenergieswhenaq~-pairis createdinsidea“hadronic
domain” of the physicalvacuum,the pair is runningaway in back-to-backconfigurationwith arelative
velocity2v -= 2c. Again, acolor-electricvortex developswith color tripletsat the two ends.

We haveseenthat threedifferent reactionswith different initial stateshave led to very similar
intermediatestates(stretchedcolor-electric vortex) before decayinginto the final state.This obser-
vation mayserveas an explanationfor the experimentalfact that the threereactionshavevery similar
multi-particledistributionsin the hadronicfinal states.

Fragmentationin the bag model
For the sakeof definiteness,we shalldescribefirst the decayof the elongatedintermediatebagof

thee~eannihilationprocess.
From Gauss’stheoremthe effectivecolor-electricfield strengthinside the vortex is

(9.1)

whereR standsfor the radius,andg is the fundamentalquark—gluoncoupling. The factor V~in (9.1)
comesfrom the triplet representationof color at the two ends.

Since the bag surfaceis classicalthroughout this section,we shall apply vacuumpressurefor
confinementto staycloseto the original work of Low. The conclusionsremainthe samewith surface
tension.

The energyof avortex of length L is

� =~E~R2ir. L+BR2irL,

wherethe secondterm comesfrom the volume energy.Fromthe minimumof � for a given L, we find
the radius

R4= ~g2/ir2B,

and

= V~g2B. L.

When the vortex tubeis long enough,a new q~-pairmaybe createdinside.Paircreationmayoccur
throughtunneling.For the balanceof energyit is necessarythat

~ 2m,

where m is the minimumquarkenergyallowed by the momentumuncertaintydue to the transverse
dimensionR:

m — ir/R —1 GeV.

Sincethe flux linesbecomeabruptedbetweenthe newly createdq and~, the bagmaybreak there
producingtwo colorlessobjects.The newly born and longitudinally excitedobjectsare similar to the
elongatedintermediatebag, so that they split again.After n splitting we get2~similar objects.The
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decay continuesuntil the longitudinal excitation of the new objectsbecomescomparableto their
transverseexcitation.Theseare not stable hadronsyet, though they decay into the final state as
ordinaryresonances(fireballs).

Let us consider the aboveprocessin the rapidity variable. Initially, the rapidity of the back-to-
backq4-pairis — ln 2p andIn 2p, respectively:

1—ln2p ln2p

The pair creationenergysomewhatdecreasesthe momentumof the quarkandantiquark,from p to

p — m. The rapidity,on the otherhand,remainsalmostthe same:

1n2(p—m)=ln2p—(m/p)=ln2p, if m<<p.

In otherwords, if the quarkand antiquarkof the longitudinally excitedbagaresufficiently separated
in rapidity space(i~y~ 3), thenpair creationdoesnot changetheir rapidity.

After splitting the bag,we find the following rapidity diagram:

— In 2p new bags In 2p

This simplepicturealreadyyields the importantpropertiesof fragmentation.
Indeed,the multiplicity of hadronsfrom the elongatedbag is the same as the sum of hadron

multiplicities of two newly createdbags.The extensionof bagsin rapidity spaceis also additive,

~y =~y,+~y2,

so thatthe multiplicity is proportionalto the length of the rapidity interval

n —— const~2 In 2p,

or

n -—- c Ins.

The abovepictureis valid, if themassof the splitting bagsis sufficiently large,V~~ 2—3 GeV. Such
a fireball mayradiateaboutfive pionson the average,thereforewe mayset the valueof c at c -— 3, in
accordancewith experiments.

The existenceof the universalplateauand the fragmentationregions is a naturalconsequenceof
the model.Sincethe color-electricfield is invariantunderflavor SU(3), the flavor of the createdpair in
the middle of the expandingbag doesnot dependon the type of the originally incoming particles.
Therefore,the rapidity spacebecomespopulateduniformly by fireballs of 2—3 GeV, andonly the ones
at the endof the rapidity distributionrememberthe specific propertiesof the original quarks.

Fireballs from the interior of the rapidity distributiondecayinto the final particlesof the universal
plateau,whereasthe two fireballs at the end of the rapidity distribution populatethe fragmentation
region of the targetandprojectile.It follows then that thewidth of a fragmentationregion is the same
as the extensionof a fireball’s decayproductsin rapidity space,~y —— 2.

At highercenterof massenergytheonly changeis that the distancebetweenthe two fragmentation
regionsbecomeslarger, so thatthe distribution dependsonly on Yrnax — v andYrnin — v, respectively.In
otherwords,Feynman’slimiting fragmentationhypothesisis anaturalconsequenceof the model.
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Thepomeron
The mechanismof multi-particleproductionis the samein e~ecollision as in, say, proton—proton

scattering.The fragmentationregionsare,of course,different.
In pp collision at least two q~pair must be createdto neutralize the color octet contentof the

fragmentingparts.Thecentralplateaudevelopsin the abovedescribedmanner,thoughits heightmay
dependon the differentpair creationin the middle, andthe differentstrengthof the color-electricfield
generatedby the octetchargesat the endsof the elongatedbag.

If the length of the initial systembeforebreakupis L0 in the c.m. systemin pp collision, thenthe
correspondingtime for which the combinedsystemholdstogetheris ‘r0 L0 since v — c = 1. In the lab
system,the correspondingeventhappensata time after collision

tL = 70/V1 — v~,

anddistancefrom the collisionpoint

XL = V0T0IVI —

where— VL is the velocity of the transformationfrom the c.m.systemto the laboratorysystem,

VL = pLI(m + EL),

and

l/Vl — v~VEL/2m.

At 300GeV, for example, l/\/l — v~— 12 so that the combinedstateholds togetherfor a long time
before breakup.This propertymay give a naturalexplanationfor the Gottfried model of particle
productionin nuclei.

The exchangeof a softgluon in pp collision leadsautomaticallyto a constantcrosssectionwhich is
mainly inelasticdueto color separation.Low estimatesa,, — ~for the quark—gluoncoupling from the
value of the total crosssection,o~°’—— 40 mb. He alsocalculatesan approximateGaussianshapefor
the diffractive peakin elastic pp scattering.

A similar qualitativedescriptionmaybe developedfor non-diffractivescatteringprocesseswhere
color separationoccursvia quark—antiquarkannihilation [7.71.

9.2. Deep inelastic scattering

Deepinelasticscatteringhassuggestedpoint-likequarkconstituentsinside thenucleon.Considered
from a referenceframewith infinite momentumthe nucleoncanbe envisagedas anassembleof quark
partonssharing the nucleon’smomentumandalmostfree. This picture is to be contrastedwith the
indicationsthathadronsareimpossibleto breakinto their constituents.

It seemsnatural to believe that the quark bag model comprisestheseaspectsof deep inelastic
scatteringprocesses.Actually theserequirementswerebasicin motivatingthe MIT bagmodel.

Insidethe bagthe quarkfields arecoupledto the non-Abeliangluon fields with a couplingconstant
which is assumedto be small. So apartfrom a region closeto the boundarythe quarksare moving
relatively freely and it is natural to assumethat a highly virtual photonwill see a free field short
distancestructure.

Unfortunately our presentknowledge is not very far from these qualitative arguments.The
problemis extremelyinterestingbut difficult. The virtual photonkicks the quark into ahighly excited
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statewith largeangularmomentum,wherethesurfaceis centeredabouta stronglydeformedshape.In
configurationspacelargedistancesareinvolved beforetheasymptoticstateof all producedhadronsis
reached.There is a quark parton propagationover a distance — wIM 0.2 ca fermi (cu = l/~=

2Mv/(—q2)), leading to the qualitativepicture of a color electric vortex discussedpreviously.For a
better understandingit is basically important to get a closer insight into the surfacedynamics,to
handlethe motionof highly deformedshapesand soon.

To get a first insightJaffe hasapproachedthisproblemin thesphericalcavity approximation.Here
the quantum modes of the cavity are populated with colored quarks,and the forward Compton
scatteringamplitudeis calculated.

Of course, if the averagequark propagationdistanceis largerthan the bagradius R, the picture
doesnot makesense.So we must restrictourselvesto the region

w~Rf0.2~10.

Not only thehadron,but thecurrentsand so thepropagatorarealsobuilt up from theeigen-modes
of the sphericalcavity. They usuallydo not satisfy thenon-linearboundarycondition, so thereis no
momentumconservationin this approximation.What we essentiallyhavehere is a potentialpicture:
thereis a naileddown sphericalbox with an infinitely high potentialwall.

To keepthe formulae transparent,considerthe 1 + 1 dimensionalcase.In order to get scalingin
1 + 1 dimensionwe shall study the scatteringof virtual scalarmesonscoupledto the quarksvia the
scalarcurrent

J’(x, t) = ~ t~
0(x,t)~A~q,,(x,t),

whereq(x, t) is thequarkfield confinedto the staticbagof length 21 centeredat theorigin, a = 1, 2, 3
is thecolor index, the matrices~ actin the flavor space.

Thegraphscontributing in lowestorder to the imaginarypart of the forward Comptonamplitude
aregiven in fig. 9.3. The wall of thecavitycould absorbmomentumandso the last two graphspersist
evenfor q

2 <0. Jaffehasdiscardedthecontributionof thecavity vacuumbubbles(last graph)on the
groundthat they requireabetterunderstandingof thevacuumstatewhich is beyondthe scopeof the
approximation.If we take the potential picture seriously,the last graph is thereand describesthe
physicalprocessof apair creationin an externalfield.

The quark fields can be expandedin terms of the cavity eigenfunctionssatisfying the linear
boundaryconditionseq. (4.1):

( ~ b ( )( exp{—in’-i.r(t—x)/21} ~+d~( )( exp{in’rr(t—x)12l} \q~ X~ 2Vi
5~0 ~n \(—l)~exp{—in’ir(t+x)/21}i n \(—1)” exp{in’ir(t+x)/21}I’

where n’ = n + ~and a is a shorthandnotationfor all thenecessaryindices.The operatorsb0 and d0
obeycanonicalanticommutationrelations

{b0(fl,), b(n2)}±= {d(n1), d~(n2)}+ = &,a’~nIn~

Fig. 9.3. Thediagramsof the virtual forward Comptonscatteringamplitudein thebagmodel.
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The bagasa naileddownline segmentis not translationallyinvariantandaccordinglythestructure
functionsaredefinedas

Wt’ = ~ J dt J dx
1 J dx2exp{iq°t— iq

1(x, — x
2)}(TI[J’(x,, t), J’(x2, 0)}~T),

whereM is themassof the stateIT).
The current commutatorcan be expressedin termsof the anticommutatorS,,av(Xi,x2, t) of the

quark fields:

[J,(x,, t), J,(x2, t)1 = ~ qa(X,, t)~AiScav(Xi,x2, t)~A,q0(x2,0) tia(X2, 0)~AjScav(X2,x1, — t)~A,q0(x,,t).

S,,av(Xi, x2, t) is given by

S,,av(Xi, x2, t) {q(x,,t), q(x2,0)}

1 [(—1)” exp{—in’ir(t —x, —x2)/21} exp{—in’ir(t —x, +x2)/21}
41 ,~ L exp{— in’ir(t + x1 — x2)/21} (— 1)~exp{—in’ir(t + x, + x2)/21}

Using theseingredientsthe Bjorken limit of the structurefunctionscanbe evaluated.Due to the
permanentconfinementthe quarkspectrumis discreteandcorrespondinglythe structurefunction is a
sumof termsproportionalto deltafunctionsenforcingenergyconservation.

The smearedstructurefunction W is definedby averagingW overa Gaussian

%~f(4O ~) = J dq°exp{-(q°-q°)
2/~2}W(q°,~),

~
andis givenby the expression:

lim “(i ~O) = ~i(~) = Ml ~ {sin2 ir(m + ~ — (Ml/ir)~)(T~b~(m)~At~A
1b0(m)lT)

B~ 2ir a.m ir (m+ ~— (Ml/ir)~)

sin
2 ir(m + + (Ml/ir)~)T b± ‘A ‘A b T 9 2

- 7r2(m +~+ (Ml/1T)~)2( 32 ia(m) . (.)

Equation(9.2) displaysBjorken scalingandcrossingexplicitly.
Thelack of momentumconservationis reflectedin the structurefunctionsbeingnon-zerofor $~>1.

The secondtermoccurswith anegativesign which causesF”(~)to be negativefor certainchoicesof
the indices i, j, in violation of thepositivity restrictionson F’~(~).This defectis dueto the negligence
of the vacuumbubbles.

A similar calculationcanbe repeatedin 3 + 1 dimension.As Jaffe andPatrascioiuhaveshownthe
cavity propagatorcan be replacedby a free field propagatorin the Bjorken limit. Exact scaling is
obtained,W

1, vW2 and PWL/M
2dependonly on ~ There is a partoninterpretationanddifferent sum

rules can be written down explicitly. However it is difficult to judge on the approximationsand we
think the questionof scalingandrelatedproblemsareopenin the bagmodel.

Justas the original MIT bagmodel was motivatedby the requirementsof deepinelasticscattering
phenomena,the introductionof surfacetensionwas partly motivatedby an apparentpuzzlethere:
thereis about fifty percentmissing momentumof the nucleon’sparton momentumspectrum.There
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mustbe somecomponentwithin thenucleonnot takingpart in electromagneticandweak interactions,
which carriesa largepartof the nucleon’stotal momentum.

If the missing momentumis associatedwith coloredgluon fields, they mustbe fairly strong fields
somehowandmany pairs areexpectedfrom vacuumpolarization.Thosepairs arejust not there,at
least not in the momentumregion 0.1 <~< I where ~ is the parton momentumwith the nucleon’s
momentumchosento be unity.

It is suggestivethat the quarkgluon couplingconstantis fairly weak so that thereis little vacuum
polarizationpresentin thegroundstatewave functionof the nucleon.If that implies that gluonscarry
little momentum in parton language,a large fraction of it must be carried by as yet unidentified
componentof the nucleon.

The volume term in the stresstensor is purely diagonal(g~”B) in any frame and nevercarries
momentum.A significant part of the fast moving nucleon’smomentum may be carried by the
membranoussurfacehowever,and the puzzlemayhavea trivial solutionin this model.

10. Conclusion

The quark bagmodelas a cleverphenomenologicaldeviceto the hadronstructureis the invention
of atheoreticalgroupat the MassachusettsInstitute of Technology.The pioneersand the authorsof
the first two paperson the model [1.1, 1.21 are A. Chodos,R.L. Jaffe, K. Johnson,C.B. Thorn and
V.F. Weisskopf.In later investigationsT. DeGrand,C. DeTar,J. Kiskis, C. Rebbi,andD. Shalloway
alsomadea usefulimpressionon ourway of thinking aboutthe model.

The physicalpicture of the bag model is associatedwith a two-phasedescriptionof the physical
vacuumwhich in “normal” phaseoutsidehadronscannotsupportthe propagationof quarkandgluon
fields. By concentrationof energy,a smalldomain of a new phase(hadronphase)may be createdin
the mediumof the physicalvacuuminsidewhich quarkandgluonfields can propagatein the ordinary
manner.This is the bag.

There is now a vague hope that a similar picture might emergefrom the detailedstudy of the
vacuum structure in quantum chromodynamics[1.27].We find it unlikely that in developing a
phenomenologicalmodel from the detailed microscopic calculations,volume energy will play a
distinguishedrole in comparisonwith surfaceenergywhenabubbleis createdin the “wrong” phase.
We havetreatedboth binding terms on an equalfooting in our report.

With due credit to the original work of the M.I.T. group who haveintroduced volume energy(or
vacuumpressure)to bind quarksandgluonsinsidehadrons,we find slightly advantageousto keepthe
surface energy for later dynamical calculations. We do not want to overemphasizethe possible
significanceof the latter term and only more refined calculationsand resultswill decide whetherit
really should be kept.

The applications of the quark bag model are very stimulating, though far from complete or
convincing.Evenif the descriptionof light mesonsand baryonsturns out to be successful,the model
facesits fate in predictingan enormouslyrich spectrumof excitations.In our opinion real hardwork
is necessaryin the coming yearsto sharpenthe reliability of thesepredictionsandconfront them with
the experimentalsituation.

The model predictsrelatively narrow exotic statesin high angularmomentumstates(baryonium)
and all-glue hadron states.Both are qualitativepredictionssubject to future experimentaltests. It
remains a remote though extremely interesting possibility to explore the possible astrophysical
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consequencesof the formationof a quarkphaseof matter in neutronstars,or self-supportingquark
stars.The bagmodel proved to be very helpful in the first preliminary investigationsof this phase
transitionfrom baryonmatterto quark matter.

Obviouslytherearetwo importanttasksof high priority in the nearfuture. The first oneis to finish
the job of the cavity approximationby a systematictreatmentof the confined gluon propagatorin
perturbativemanner and calculating the spectrumwith a quantummechanicallyblurred surface.
Secondly,and not completely independently,there is an urgent need for developingsystematic
methodsfor calculating departuresfrom the spherical approximation in large angularmomentum
states.

In the meantimeit would be very interestingto derive a bag-like structurefrom the microscopic
investigationof the physicalvacuumin quantumchromodynamics.
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